首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   11篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   4篇
  2016年   5篇
  2015年   11篇
  2014年   8篇
  2013年   24篇
  2012年   21篇
  2011年   20篇
  2010年   13篇
  2009年   9篇
  2008年   26篇
  2007年   19篇
  2006年   24篇
  2005年   20篇
  2004年   10篇
  2003年   4篇
  2002年   10篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1980年   1篇
排序方式: 共有267条查询结果,搜索用时 15 毫秒
1.
This paper uses computational fluid dynamics to simulate and analyze intragastric fluid motions induced by human peristalsis. We created a two-dimensional computational domain of the distal stomach where peristalsis occurs. The motion of the gastric walls induced by an antral contraction wave (ACW) on the wall of the computational domain was well simulated using a function defined in this study. Retropulsive flow caused by ACW was observed near the occluded region, reaching its highest velocity of approximately 12 mm/s in the narrowest region. The viscosity of the model gastric contents applied in this study hardly affected the highest velocity, but greatly affected the velocity profile in the computational domain. The shear rate due to gastric fluid motion was calculated using the numerical output data. The shear rate reached relatively high values of approximately 20 s−1 in the most occluded region. The shear rate profile was almost independent of the fluid viscosity. We also simulated mass transfer of a gastric digestive enzyme (pepsin) in model gastric content when peristalsis occurs on the gastric walls. The visualized simulation results suggest that gastric peristalsis is capable of efficiently mixing pepsin secreted from the gastric walls with an intragastric fluid.  相似文献   
2.
Testis maturation, germ cell development and function of sperm, are related to lipid composition. Phosphatidylcholines (PCs) play a key role in the structure and function of testes. As well, increases of polyunsaturated fatty acids (PUFA) and highly unsaturated fatty acids (HUFA), especially arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are essential for male fertility. This study is the first report to show the composition and distribution of PCs and total fatty acids (FAs) in three groups of seminiferous tubules (STs) classified by cellular associations [i.e., A (STs with mostly early germ cells), B (STs with mostly spermatids), and C (STs with spermatozoa)], in three morphotypes of Macrobrachium rosenbergii, [i.e., small male (SM), orange claw male (OC), and blue claw male (BC)]. Thin layer chromatography exhibited levels of PCs reaching maxima in STs of group B. Imaging mass spectrometry showed remarkably high signals corresponding to PC (16:0/18:1), PC (18:0/18:2), PC (18:2/20:5), and PC (16:0/22:6) in STs of groups A and B. Moreover, most signals were detected in the early developing cells and the intertubular area, but not at the area containing spermatozoa. Finally, gas chromatography-mass spectrometry indicated that the major FAs present in the testes were composed of 14:0, 16:0, 17:0, 18:0, 16:1, 18:1, 18:2, 20:1, 20:2, 20:4, 20:5, and 22:6. The testes of OC contained the greatest amounts of these FAs while the testes of BC contained the least amounts of these FAs, and there was more EPA (20:5) in the testes of SM and OC than those in the BC. The increasing amounts of FAs in the SM and OC indicate that they are important for spermatogenesis and spermiogenesis. This knowledge will be useful in formulating diets containing PUFA and HUFA for prawn broodstocks in order to improve testis development, and lead to increased male fecundity.  相似文献   
3.
The class I myosin genes are conserved in diverse organisms, and their gene products are involved in actin dynamics, endocytosis, and signal transduction. Drosophila melanogaster has three class I myosin genes, Myosin 31DF (Myo31DF), Myosin 61F (Myo61F), and Myosin 95E (Myo95E). Myo31DF, Myo61F, and Myo95E belong to the Myosin ID, Myosin IC, and Myosin IB families, respectively. Previous loss-of-function analyses of Myo31DF and Myo61F revealed important roles in left–right (LR) asymmetric development and enterocyte maintenance, respectively. However, it was difficult to elucidate their roles in vivo, because of potential redundant activities. Here we generated class I myosin double and triple mutants to address this issue. We found that the triple mutant was viable and fertile, indicating that all three class I myosins were dispensable for survival. A loss-of-function analysis revealed further that Myo31DF and Myo61F, but not Myo95E, had redundant functions in promoting the dextral LR asymmetric development of the male genitalia. Myo61F overexpression is known to antagonize the dextral activity of Myo31DF in various Drosophila organs. Thus, the LR-reversing activity of overexpressed Myo61F may not reflect its physiological function. The endogenous activity of Myo61F in promoting dextral LR asymmetric development was observed in the male genitalia, but not the embryonic gut, another LR asymmetric organ. Thus, Myo61F and Myo31DF, but not Myo95E, play tissue-specific, redundant roles in LR asymmetric development. Our studies also revealed differential colocalization of the class I myosins with filamentous (F)-actin in the brush border of intestinal enterocytes.  相似文献   
4.
Exercise training influences phospholipid fatty acid composition in skeletal muscle and these changes are associated with physiological phenotypes; however, the molecular mechanism of this influence on compositional changes is poorly understood. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, the fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training induces these adaptations, together with increased PGC-1α, PGC-1α may contribute to the exercise-mediated change in phospholipid fatty acid composition. To determine the role of PGC-1α, we performed lipidomic analyses of skeletal muscle from genetically modified mice that overexpress PGC-1α in skeletal muscle or that carry KO alleles of PGC-1α. We found that PGC-1α affected lipid profiles in skeletal muscle and increased several phospholipid species in glycolytic muscle, namely phosphatidylcholine (PC) (18:0/22:6) and phosphatidylethanolamine (PE) (18:0/22:6). We also found that exercise training increased PC (18:0/22:6) and PE (18:0/22:6) in glycolytic muscle and that PGC-1α was required for these alterations. Because phospholipid fatty acid composition influences cell permeability and receptor stability at the cell membrane, these phospholipids may contribute to exercise training-mediated functional changes in the skeletal muscle.  相似文献   
5.
Extracellular adenosine activates P1 receptors (A1, A2A, A2B, A3) on cellular membranes. Here, we investigated the involvement of P1 receptor-mediated signaling in differentiation to regulatory T cells (Treg). Treg were induced in vitro by incubating isolated CD4+CD62L+ naïve murine T cells under Treg-skewing conditions. Antagonists of A1 and A2B receptors suppressed the expression of Foxp3, a specific marker of Treg, and the production of IL-10, suggesting the involvement of A1 and A2B receptors in differentiation to Treg. We also investigated the effect of these antagonists on T cell activation, which is essential for differentiation to Treg, and found that A1 antagonist, but not A2B antagonist, suppressed T cell activation. We conclude that A1 and A2B receptors are both involved in differentiation to Treg, but through different mechanisms. Since A2B antagonist blocked differentiation to Treg without suppressing T cell activation, it is possible that blockade of A2B receptor would facilitate tumor immunity.  相似文献   
6.
Enterococcus hirae vacuolar ATPase (V-ATPase) is composed of a soluble catalytic domain (V1; NtpA3-B3-D-G) and an integral membrane domain (V0; NtpI-K10) connected by a central and peripheral stalk(s) (NtpC and NtpE-F). Here we examined the nucleotide binding of NtpA monomer, NtpB monomer or NtpD-G heterodimer purified by using Escherichia coli expression system in vivo or in vitro, and the reconstitution of the V1 portion with these polypeptides. The affinity of nucleotide binding to NtpA was 6.6 μM for ADP or 3.1 μM for ATP, while NtpB or NtpD-G did not show any binding. The NtpA and NtpB monomers assembled into NtpA3-B3 heterohexamer in nucleotide binding-dependent manner. NtpD-G bound NtpA3-B3 forming V1 (NtpA3-B3-D-G) complex independent of nucleotides. The V1 formation from individual NtpA and NtpB monomers with NtpD-G heterodimer was absolutely dependent on nucleotides. The ATPase activity of reconstituted V1 complex was as high as that of native V1-ATPase purified from the V0V1 complex by EDTA treatment of cell membrane. This in vitro reconstitution system of E. hirae V1 complex will be valuable for characterizing the subunit-subunit interactions and assembly mechanism of the V1-ATPase complex.  相似文献   
7.
The RIG-I like receptor (RLR) comprises three homologues: RIG-I (retinoic acid-inducible gene I), MDA5 (melanoma differentiation-associated gene 5), and LGP2 (laboratory of genetics and physiology 2). Each RLR senses different viral infections by recognizing replicating viral RNA in the cytoplasm. The RLR contains a conserved C-terminal domain (CTD), which is responsible for the binding specificity to the viral RNAs, including double-stranded RNA (dsRNA) and 5′-triphosphated single-stranded RNA (5′ppp-ssRNA). Here, the solution structures of the MDA5 and LGP2 CTD domains were solved by NMR and compared with those of RIG-I CTD. The CTD domains each have a similar fold and a similar basic surface but there is the distinct structural feature of a RNA binding loop; The LGP2 and RIG-I CTD domains have a large basic surface, one bank of which is formed by the RNA binding loop. MDA5 also has a large basic surface that is extensively flat due to open conformation of the RNA binding loop. The NMR chemical shift perturbation study showed that dsRNA and 5′ppp-ssRNA are bound to the basic surface of LGP2 CTD, whereas dsRNA is bound to the basic surface of MDA5 CTD but much more weakly, indicating that the conformation of the RNA binding loop is responsible for the sensitivity to dsRNA and 5′ppp-ssRNA. Mutation study of the basic surface and the RNA binding loop supports the conclusion from the structure studies. Thus, the CTD is responsible for the binding affinity to the viral RNAs.  相似文献   
8.

Background and Purpose

The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β) regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer.

Methods

Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined.

Results

Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2) and decreased phosphorylation of focal adhesion kinase (FAK). The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts.

Conclusion

The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer.  相似文献   
9.
Unhealthy eating behaviors increase the risk of metabolic diseases, but the underlying mechanisms are not fully elucidated. Because inflammation contributes to the pathogenesis of metabolic diseases, it is important to understand the effects of unhealthy eating on the inflammatory state. The objective of our present study was to address the effects of a fasting–refeeding regime, a model of irregular eating, on the hepatic inflammatory responses in mouse. The animals were fasted for 48 h and then refed either a standard or low-carbohydrate/high-fat diet. Inflammatory gene expression in the liver was then sequentially measured for the first 17 h after initiation of refeeding. To assess the roles of dietary carbohydrates and toll-like receptor 2 (TLR2) in the refeeding-induced inflammatory changes, gene expression levels in mice refed only carbohydrates (α-corn starch and sucrose) at different doses and in TLR2-deficient mice refed a standard diet were also analyzed. Refeeding with a standard diet increased the liver expression of Tlr2, proinflammatory mediators (Cxcl10, Cxcl1, Cxcl2, Icam-1) and negative regulators of TLR-signaling (A20 and Atf3). These increases were attenuated in mice refed a low-carbohydrate/high-fat diet. Refeeding only α-corn starch and sucrose also increased the expression of these inflammatory pathway genes depending on the doses. TLR2 deficiency significantly attenuated the refeeding-induced increase in the liver expression of Cxcl10, Cxcl1, Icam-1 and A20. These findings suggest that an irregular eating behavior can elicit a liver inflammatory response, which is at least partly mediated by TLR2, and that dietary carbohydrates play critical roles in this process.  相似文献   
10.
Transforming growth factor-ß1 (TGF-β1) is a multifunctional cytokine that is involved in various pathophysiological processes, including cancer progression and fibrotic disorders. Here, we show that treatment with TGF-β1 (5 ng/mL) induced downregulation of cyclooxygenase-2 (COX-2), leading to reduced synthesis of prostaglandin E2 (PGE2), in human lung cancer A549 cells. Treatment of cells with specific inhibitors of COX-2 or PGE2 receptor resulted in growth inhibition, indicating that the COX-2/PGE2 pathway contributes to proliferation in an autocrine manner. TGF-β1 treatment induced growth inhibition, which was attenuated by exogenous PGE2. TGF-β1 is also a potent inducer of epithelial mesenchymal transition (EMT), a phenotype change in which epithelial cells differentiate into fibroblastoid cells. Supplementation with PGE2 or PGE2 receptor EP4 agonist PGE1-alcohol, as compared with EP1/3 agonist sulprostone, inhibited TGF-β1-induced expression of fibronectin and collagen I (extracellular matrix components). Exogenous PGE2 or PGE2 receptor agonists also suppressed actin remodeling induced by TGF-β1. These results suggest that PGE2 has an anti-fibrotic effect. We conclude that TGF-β1-induced downregulation of COX-2/PGE2 signaling is involved in facilitation of fibrotic EMT response in A549 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号