首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   17篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   5篇
  2012年   2篇
  2011年   9篇
  2010年   10篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   8篇
  2005年   7篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   6篇
  1999年   6篇
  1998年   1篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1975年   3篇
  1970年   1篇
  1969年   2篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
1.
M Nakasako  M Odaka  M Yohda  N Dohmae  K Takio  N Kamiya  I Endo 《Biochemistry》1999,38(31):9887-9898
The crystal structure analysis of the Fe-type nitrile hydratase from Rhodococcus sp. N-771 revealed the unique structure of the enzyme composed of the alpha- and beta-subunits and the unprecedented structure of the non-heme iron active center [Nagashima, S., et al. (1998) Nat. Struct. Biol. 5, 347-351]. A number of hydration water molecules were identified both in the interior and at the exterior of the enzyme. The study presented here investigated the roles of the hydration water molecules in stabilizing the tertiary and the quaternary structures of the enzyme, based on the crystal structure and the results from a laser light scattering experiment for the enzyme in solution. Seventy-six hydration water molecules between the two subunits significantly contribute to the alphabeta heterodimer formation by making up the surface shape, forming extensive networks of hydrogen bonds, and moderating the surface charge of the beta-subunit. In particular, 20 hydration water molecules form the extensive networks of hydrogen bonds stabilizing the unique structure of the active center. The amino acid residues hydrogen-bonded to those hydration water molecules are highly conserved among all known nitrile hydratases and even in the homologous enzyme, thiocyanate hydrolase, suggesting the structural conservation of the water molecules in the NHase family. The crystallographic asymmetric unit contained two heterodimers connected by 50 hydration water molecules. The heterotetramer formation in crystallization was clearly explained by the concentration-dependent aggregation state of NHase found in the light scattering measurement. The measurement proved that the dimer-tetramer equilibrium shifted toward the heterotetramer dominant state in the concentration range of 10(-2)-1.0 mg/mL. In the tetramer dominant state, 50 water molecules likely glue the two heterodimers together as observed in the crystal structure. Because NHase exhibits a high abundance in bacterial cells, the result suggests that the heterotetramer is physiologically relevant. In addition, it was revealed that the substrate specificity of this enzyme, recognizing small aliphatic substrates rather than aromatic ones, came from the narrowness of the entrance channel from the bulk solvent to the active center. This finding may give a clue for changing the substrate specificity of the enzyme. Under the crystallization condition described here, one 1,4-dioxane molecule plugged the channel. Through spectroscopic and crystallographic experiments, we found that the molecule prevented the dissociation of the endogenous NO molecule from the active center even when the crystal was exposed to light.  相似文献   
2.
Three aldohexoses, glucose, galactose, and mannose, and three aldopentoses, arabinose, xylose, and ribose, were derivatized with L‐tryptophanamide (L‐TrpNH2) under alkaline conditions. Using a basic mobile phase (pH 9.2), the three aldohexoses or the three aldopentoses were simultaneously enantioseparated, respectively, but all the six monosaccharides could not be simultaneously enantioseparated. A large amount of nonreacted L‐TrpNH2 was detected after the derivatized monosaccharides. In order to widen the separation window, a large portion of nonreacted L‐TrpNH2 could be eliminated by liquid–liquid extraction with ethylacetate, and elution order of the derivatized monosaccharides and nonreacted L‐TrpNH2 was found to be reversed using a neutral mobile phase. All of the six monosaccharides were simultaneously enantioseparated by reversed phase high‐performance liquid chromatography (HPLC) using InertSustainSwift C18 column (4.6 mm i.d. × 150 mm) and a mobile phase containing 180 mM phosphate buffer (pH 7.6), 1.5 mM butylboronic acid, and 5% acetonitrile at 40 °C. Nomenclature of D and L for monosaccharides is based on the configurations of the asymmetric C4 center for aldopentoses and C5 center for aldohexoses. It was found that the enantiomer elution order of these six monosaccharides and fucose in the proposed method conformed to be the absolute configuration of the C2 center. Chirality 27:417–421, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
3.
Halohydrin hydrogen‐halide‐lyase (H‐Lyase) is a bacterial enzyme that is involved in the degradation of halohydrins. This enzyme catalyzes the intramolecular nucleophilic displacement of a halogen by a vicinal hydroxyl group in halohydrins to produce the corresponding epoxides. The epoxide products are subsequently hydrolyzed by an epoxide hydrolase, yielding the corresponding 1, 2‐diol. Until now, six different H‐Lyases have been studied. These H‐Lyases are grouped into three subtypes (A, B, and C) based on amino acid sequence similarities and exhibit different enantioselectivity. Corynebacterium sp. strain N‐1074 has two different isozymes of H‐Lyase, HheA (A‐type) and HheB (B‐type). We have determined their crystal structures to elucidate the differences in enantioselectivity among them. All three groups share a similar structure, including catalytic sites. The lack of enantioselectivity of HheA seems to be due to the relatively wide size of the substrate tunnel compared to that of other H‐Lyases. Among the B‐type H‐Lyases, HheB shows relatively high enantioselectivity compared to that of HheBGP1. This difference seems to be due to amino acid replacements at the active site tunnel. The binding mode of 1, 3‐dicyano‐2‐propanol at the catalytic site in the crystal structure of the HheB‐DiCN complex suggests that the product should be (R)‐epichlorohydrin, which agrees with the enantioselectivity of HheB. Comparison with the structure of HheC provides a clue for the difference in their enantioselectivity. Proteins 2015; 83:2230–2239. © 2015 Wiley Periodicals, Inc.  相似文献   
4.
This study was undertaken to estimate the amount of cadmium (Cd) exposure needed for the development of Itai-itai disease and the influence of using Jinzu River water for drinking and/or cooking on its development. The subjects comprised 38 Itai-itai disease patients admitted both for questionnaire survey and medical testing. The period when the patients started to perceive leg/back pain was defined as ‘mild disease onset’ and that when they experienced the most severe manifestations such as ambulatory disturbance as ‘severe disease onset’. In a comparison of non-users/users of river water, mean age and lifetime Cd intake (LCd) estimated from the daily consumption of rice and other foods at the onset of mild or severe disease showed smaller values in the users than non-users. LCd in non-users/users of river water for drinking and/or cooking were estimated as 3.46–3.60 g/2.58–2.63 g at mild disease onset and 4.24–4.44 g/3.50–3.54 g at severe disease onset. A portion of the differences in LCd in non-users/users is attributable to the influence of Cd consumption from the use of river water, although it was suggested that LCd estimated from eating Cd-polluted rice exerted a greater influence on the development of Itai-itai disease than drinking and/or cooking with Cd-polluted river water.  相似文献   
5.
Some physicochemical properties and substrate specificity of acid protease B isolated from Scytalidium lignicolum were investigated.

The molecular weight determined by the sedimentation equilibrium and sedimentation velocity method was 21,000 and 19,000~20,000, respectively. The isoelectric point was determined as 3.0 using the Tiselius electrophoresis apparatus, 3.2 by isoelectric focusing, respectively.

The enzyme did not contain histidine and was composed of 188 amino acid residues. Substrate specificity against various synthetic peptides was different from those of the acid proteases which were inactivated by S–PI and DAN.  相似文献   
6.

Background

Marked accumulation of alveolar macrophages (AM) conferred by apoptosis resistance has been implicated in pathogenesis of chronic obstructive pulmonary disease (COPD). Apoptosis inhibitor of macrophage (AIM), has been shown to be produced by mature tissue macrophages and AIM demonstrates anti-apoptotic property against multiple apoptosis-inducing stimuli. Accordingly, we attempt to determine if AIM is expressed in AM and whether AIM is involved in the regulation of apoptosis in the setting of cigarette smoke extract (CSE) exposure.

Methods

Immunohistochemical evaluations of AIM were performed. Immunostaining was assessed by counting total and positively staining AM numbers in each case (n = 5 in control, n = 5 in non-COPD smoker, n = 5 in COPD). AM were isolated from bronchoalveolar lavage fluid (BALF). The changes of AIM expression levels in response to CSE exposure in AM were evaluated. Knock-down of anti-apoptotic Bcl-xL was mediated by siRNA transfection. U937 monocyte-macrophage cell line was used to explore the anti-apoptotic properties of AIM.

Results

The numbers of AM and AIM-positive AM were significantly increased in COPD lungs. AIM expression was demonstrated at both mRNA and protein levels in isolated AM, which was enhanced in response to CSE exposure. AIM significantly increased Bcl-xL expression levels in AM and Bcl-xL was involved in a part of anti-apoptotic mechanisms of AIM in U937 cells in the setting of CSE exposure.

Conclusions

These results suggest that AIM expression in association with cigarette smoking may be involved in accumulation of AM in COPD.  相似文献   
7.
Calcium ionophore, A23187, is known to be a comitogen, but it activates a suicide process characterized by DNA fragmentation at linker regions in mouse immature thymocytes. It did not induce DNA fragmentation in T lymphocytes prepared from lymph node and spleen cells. Induction of DNA fragmentation by A23187 depends on protein phosphorylation and synthesis of mRNA and protein, because an inhibitor of protein kinase, 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine dihydrochloride (H-7), actinomycin D, and cycloheximide, respectively, inhibits the DNA fragmentation and cell death. Studies adding the inhibitors at various times show that protein phosphorylation and mRNA synthesis occur within a few hours after incubation with A23187 followed by the protein synthesis responsible for inducing DNA fragmentation. Phorbol esters, 12-O-tetradecanoyl 13-acetate (TPA) and phorbol 12,13-dibutyrate (PBD), which are capable of activating protein kinase C, also induced similar DNA fragmentation in immature thymocytes, followed by cell death. PBD committed the suicide process after 6 h of incubation, because the DNA fragmentation above the control level was not induced when PDB was removed from the medium before 6 h of incubation. A23187 or a phorbol ester alone induced DNA fragmentation followed by cell death, whereas the addition of TPA at low concentration inhibited the DNA fragmentation induced by A23187 accompanied with an increase in DNA synthesis. The result suggests that TPA switched a suicide process induced by A23187 to an opposite process: stimulation of DNA synthesis. Physiologic factors and mechanisms which regulate cell proliferation and death in the thymus are not known at present, but the signals by protein kinases and calcium ions may regulate both cell proliferation and death, independently, synergistically or antagonistically.  相似文献   
8.
The dose dependent effect of ipriflavone (7-isopropoxy-isoflavone) on the femoral bone in streptozotocin-induced diabetic rats was studied by microdensitometric analysis. Diabetic rats showed severe hyperglycemia, glucosuria, hypoinsulinemia, associated with increased urinary calcium and hydroxyproline. Microdensitometric analysis revealed decreases in femoral length, bone width, and bone density. The dietary administration of ipriflavone (about 270 mg/kg/day) to the diabetic rats for 6 weeks prevented reduction of the cortical thickness index in the diaphysis and depletion of bone density in the distal metaphysis, and also reduced the inner diameter of the diaphysis; diabetic state was not improved. A simple correlation and linear regression analysis revealed that ipriflavone also significantly reduced the inner diameter in the diaphysis at a dose of 90 mg/kg/day, but not at one of 25 mg/kg/day. These results suggest that ipriflavone suppresses the depletion of the femoral bone through inhibition of bone resorption in a dose dependent fashion; its minimum effective dose is 90 mg/kg/day in experimental diabetes.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号