首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2022年   1篇
  2017年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2005年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Phytochemistry Reviews - The production of safe foods with little or no artificial preservatives is one of the foremost leading challenges for food manufacturing industries because synthetic...  相似文献   
2.
3.
DNA microarray experiments have generated large amount of gene expression measurements across different conditions. One crucial step in the analysis of these data is to detect differentially expressed genes. Some parametric methods, including the two-sample t-test (T-test) and variations of it, have been used. Alternatively, a class of non-parametric algorithms, such as the Wilcoxon rank sum test (WRST), significance analysis of microarrays (SAM) of Tusher et al. (2001), the empirical Bayesian (EB) method of Efron et al. (2001), etc., have been proposed. Most available popular methods are based on t-statistic. Due to the quality of the statistic that they used to describe the difference between groups of data, there are situations when these methods are inefficient, especially when the data follows multi-modal distributions. For example, some genes may display different expression patterns in the same cell type, say, tumor or normal, to form some subtypes. Most available methods are likely to miss these genes. We developed a new non-parametric method for selecting differentially expressed genes by relative entropy, called SDEGRE, to detect differentially expressed genes by combining relative entropy and kernel density estimation, which can detect all types of differences between two groups of samples. The significance of whether a gene is differentially expressed or not can be estimated by resampling-based permutations. We illustrate our method on two data sets from Golub et al. (1999) and Alon et al. (1999). Comparing the results with those of the T-test, the WRST and the SAM, we identified novel differentially expressed genes which are of biological significance through previous biological studies while they were not detected by the other three methods. The results also show that the genes selected by SDEGRE have a better capability to distinguish the two cell types.  相似文献   
4.
5.
Cui Y  Kang G  Sun K  Qian M  Romero R  Fu W 《Genetics》2008,179(1):637-650
Genes are the functional units in most organisms. Compared to genetic variants located outside genes, genic variants are more likely to affect disease risk. The development of the human HapMap project provides an unprecedented opportunity for genetic association studies at the genomewide level for elucidating disease etiology. Currently, most association studies at the single-nucleotide polymorphism (SNP) or the haplotype level rely on the linkage information between SNP markers and disease variants, with which association findings are difficult to replicate. Moreover, variants in genes might not be sufficiently covered by currently available methods. In this article, we present a gene-centric approach via entropy statistics for a genomewide association study to identify disease genes. The new entropy-based approach considers genic variants within one gene simultaneously and is developed on the basis of a joint genotype distribution among genetic variants for an association test. A grouping algorithm based on a penalized entropy measure is proposed to reduce the dimension of the test statistic. Type I error rates and power of the entropy test are evaluated through extensive simulation studies. The results indicate that the entropy test has stable power under different disease models with a reasonable sample size. Compared to single SNP-based analysis, the gene-centric approach has greater power, especially when there is more than one disease variant in a gene. As the genomewide genic SNPs become available, our entropy-based gene-centric approach would provide a robust and computationally efficient way for gene-based genomewide association study.  相似文献   
6.
7.
8.
9.
DNA methylation is an important defense and regulatory mechanism. In mammals, most DNA methylation occurs at CpG sites, and asymmetric non-CpG methylation has only been detected at appreciable levels in a few cell types. We are the first to systematically study the strand-specific distribution of non-CpG methylation. With the divide-and-compare strategy, we show that CHG and CHH methylation are not intrinsically different in human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We also find that non-CpG methylation is skewed between the two strands in introns, especially at intron boundaries and in highly expressed genes. Controlling for the proximal sequences of non-CpG sites, we show that the skew of non-CpG methylation in introns is mainly guided by sequence skew. By studying subgroups of transposable elements, we also found that non-CpG methylation is distributed in a strand-specific manner in both short interspersed nuclear elements (SINE) and long interspersed nuclear elements (LINE), but not in long terminal repeats (LTR). Finally, we show that on the antisense strand of Alus, a non-CpG site just downstream of the A-box is highly methylated. Together, the divide-and-compare strategy leads us to identify regions with strand-specific distributions of non-CpG methylation in humans.  相似文献   
10.
MOTIVATION: Epistatic Miniarray Profiles (EMAP) has enabled the mapping of large-scale genetic interaction networks; however, the quantitative information gained from EMAP cannot be fully exploited since the data are usually interpreted as a discrete network based on an arbitrary hard threshold. To address such limitations, we adopted a mixture modeling procedure to construct a probabilistic genetic interaction network and then implemented a Bayesian approach to identify densely interacting modules in the probabilistic network. RESULTS: Mixture modeling has been demonstrated as an effective soft-threshold technique of EMAP measures. The Bayesian approach was applied to an EMAP dataset studying the early secretory pathway in Saccharomyces cerevisiae. Twenty-seven modules were identified, and 14 of those were enriched by gold standard functional gene sets. We also conducted a detailed comparison with state-of-the-art algorithms, hierarchical cluster and Markov clustering. The experimental results show that the Bayesian approach outperforms others in efficiently recovering biologically significant modules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号