首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   9篇
  2023年   1篇
  2022年   4篇
  2021年   16篇
  2020年   23篇
  2019年   23篇
  2018年   20篇
  2017年   1篇
  2016年   9篇
  2015年   5篇
  2014年   6篇
  2013年   14篇
  2012年   7篇
  2011年   5篇
  2010年   3篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  1999年   1篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
1.
2.
Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk-fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real-time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION-casein scaffolds including GATA-4, cardiac troponin T, Nkx 2.5, and alpha-myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core-shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self-renewal capacity.  相似文献   
3.
Autophagy is considered as an important mechanism for maintaining homeostasis and responsible for the degradation of superfluous or potentially toxic components and organelles. Autophagy impairment is associated with a number of pathological conditions, such as aging, neurological disorders, cancer, and infection. Autophagy also plays a significant role in cancer chemotherapy. The multiple cancer drugs have been notably developed with the strategy of autophagy modulation. Statins, 3-hydroxy-3-methyl-glutaryl-CoA inhibitors, are known due to their efficacy in decreasing low-density lipoprotein and extensively used for the management of cardiovascular diseases. Statins have other therapeutic and biological activities, such as antioxidant, anti-inflammatory, antitumor, and neuroprotective known as pleiotropic effects. It seems that statins are capable of targeting various signaling pathways in the induction of their great pharmacological effects. At the present study, we demonstrate the therapeutic effects of statins mediated via autophagy regulation.  相似文献   
4.
We report on the development of a new model of alveolar air–tissue interface on a chip. The model consists of an array of suspended hexagonal monolayers of gelatin nanofibers supported by microframes and a microfluidic device for the patch integration. The suspended monolayers are deformed to a central displacement of 40–80 µm at the air–liquid interface by application of air pressure in the range of 200–1,000 Pa. With respect to the diameter of the monolayers, that is, 500 µm, this displacement corresponds to a linear strain of 2–10% in agreement with the physiological strain range in the lung alveoli. The culture of A549 cells on the monolayers for an incubation time of 1–3 days showed viability in the model. We exerted a periodic strain of 5% at a frequency of 0.2 Hz for 1 hr to the cells. We found that the cells were strongly coupled to the nanofibers, but the strain reduced the coupling and induced remodeling of the actin cytoskeleton, which led to a better tissue formation. Our model can serve as a versatile tool in lung investigations such as in inhalation toxicology and therapy.  相似文献   
5.
Rapid growth in nanotechnology toward the development of nanomedicine agents holds massive promise to improve therapeutic approaches against cancer. Nanomedicine products represent an opportunity to achieve sophisticated targeting strategies and multifunctionality. Nowadays, nanoparticles (NPs) have multiple applications in different branches of science. In recent years, NPs have repetitively been reported to play a significant role in modern medicine. They have been analyzed for different clinical applications, such as drug carriers, gene delivery to tumors, and contrast agents in imaging. A wide range of nanomaterials based on organic, inorganic, lipid, or glycan compounds, as well as on synthetic polymers has been utilized for the development and improvement of new cancer therapeutics. In this study, we discuss the role of NPs in treating cancer among different drug delivery methods for cancer therapy.  相似文献   
6.
A segregating population from the cross between drought sensitive (Variant-2) and drought tolerant (Cham-6) genotypes was made to identify molecular markers linked to wheat (Triticum aestivum L.) flag leaf senescence under water-stress. From 38 random amplified polymorphic DNA (RAPD) primers, 25 inter-simple sequence repeat (ISSR) primers and 46 simple sequence repeat (SRR) primers, tested for polymorphism among parental genotypes and F2 population. Quantitative trait locus (QTL) for flag leaf senescence was associated with 1 RAPD marker (Pr9), 4 ISSR markers (Pr8, AD5, AD2 and AD3), and 1 SSR marker (Xgwm382) and explained 44, 50, 35, 31, 22 and 73 % phenotypic variation, respectively. The genetic distance between flag leaf senescence gene and Pr9 was 10.0 cM (LOD score 22.9). The markers Pr8, AD5, AD2 and AD3 had genetic distances of 10.5, 14.6, 15.6 and 18.1 cM, respectively (LOD scores 22.6, 17.8, 17.5 and 14.6). The genetic distance between Xgwm382 was 3.9 cM (LOD score 33.8). Therefore, the RAPD, ISSR and SSR markers linked to the QTL for the drought-induced flag leaf senescence can be further used in breeding for drought tolerance in wheat.  相似文献   
7.
Climate change has direct and indirect impacts on forest ecosystems worldwide. In this context, changing site conditions and altered disturbance regimes as well as forest management responses are challenging the conservation of biodiversity in forests. Climate-induced dynamics and uncertainties related to future forest ecosystem development are calling into question current conservation strategies and concepts. Given the longevity of trees, slow development rates of forest ecosystems and slow migration rates of many forest species, the planning of adaptation measures in response to climate change are especially difficult though highly important for forest biodiversity conservation. This paper introduces a special issue with eight contributions which deal with a variety of aspects of forest biodiversity conservation in the face of climate change. More specifically, the papers address direct impacts of climate change on forest biodiversity, adaptation measures for forest and conservation management, as well as resulting challenges for conservation strategies and concepts. In conclusion, adaptation measures that enhance diversity and provide different options for future action, thereby maintaining ecosystems’ resilience, as well as conservation management operating on a landscape level, are promoted as being beneficial for coping with uncertainties related to climate change. Adaptive management, which constantly reviews conservation goals and measures, and which takes into account both science-based and local ecological knowledge on climate change can be a valuable tool to inform decisions for forest biodiversity conservation.  相似文献   
8.
Evading immune destruction is a hallmark of cancer. Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid immune cells, are thought to foster the establishment of an immunosuppressive tumor microenvironment, but it remains unclear how. This study aims to determine the levels of circulating MDSCs and their subpopulations and test their immunosuppressive functions in patients with breast cancer (BC). We analyzed the fractions of MDSCs in freshly isolated peripheral blood mononuclear cells of patients with BC and healthy donors using flow cytometry. Circulating MDSCs were further phenotyped using fluorescently labeled antihuman monoclonal antibodies. Coculture experiments revealed the effects of MDSCs on CD3+ T cell response. Moreover, we correlated circulating MDSC levels with clinicopathological features of patients with BC. We show that the fraction of HLA-DR CD33 + MDSCs in peripheral blood is about 10-fold higher in patients with BC than in healthy control individuals. The levels of all MDSC subpopulations, including monocytic and granulocytic MDSCs, are significantly elevated. Coculture experiments of purified HLA-DR CD33 + MDSCs and CD3 + T cells demonstrate that T cell proliferation is more effectively inhibited by BC patient-derived MDSCs than by healthy control MDSCs. Moreover, increased circulating MDSC levels robustly associate with advanced BC stage and positive lymph node status. By being more abundant and more effective T cell suppressors, BC patient-derived circulating MDSCs exert a dual immunosuppressive effect. Our findings pave the way to develop novel diagnostic and immunotherapeutic strategies, aimed at detecting and inhibiting MDSCs in patients with BC.  相似文献   
9.
The Wnt/β-catenin pathway is one of the most common pathways dysregulated in breast cancer, and may, therefore, be a potential-therapeutic target. We have investigated the effects of PNU-74654 in breast cancer, as a Wnt/β-catenin inhibitor, either alone or in combination with fluorouracil (5-FU). PNU-74654 suppressed cell growth at an IC 50 of 122 ± 0.4 μmol/L and synergistically enhanced the antiproliferative activity of gemcitabine by modulating the Wnt pathway. Using a 3D cell culture model, we found that the PNU-74654 caused tumor shrinkage. It reduced the migration of MCF-7 cells (by an 18% reduction in invasive behavior) after the treatment with PNU-74654 through perturbation of E-cadherin and MMP3/9. PNU-74654/5-FU combination enhanced the percentages of cells in S-phase and significantly increased apoptosis. Moreover, our data showed that this agent was able to inhibit the growth of tumor in a xenograft model, although this effect was more pronounced in the animals treated with PNU-74654 plus 5-FU. These data show the ability of PNU-74654 to specifically target Wnt pathway, interfere with cell proliferation, induce-apoptosis, reduce-migration, and synergistically interact with 5-FU, supporting further studies on this novel therapeutic-approach for breast cancer.  相似文献   
10.
In recent decades, cancer has been one of the most important concerns of the human community, which affects human life from many different ways, such as breast, lung, colorectal, prostate, and other cancers. Colorectal cancer is one of the most commonly diagnosed cancers in the world that has recently been introduced as the third leading cause of cancer deaths in the world. microRNAs have a very crucial role in tumorgenesis and prevention of cancer, which plays a significant role with influencing various factors through different signaling pathways. Phosphoinositide 3 (PI3)-kinase/AKT is one of the most important signaling pathways involved in the control and growth of tumor in colorectal cancer, through important proteins of this pathway, such as PTEN and AKT, that they can perform specific influence on this process. Our effort in this study is to collect microRNAs that act as tumor suppressors and oncomirs in this cancer through PI3-kinase/AKT signaling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号