首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
  国内免费   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   8篇
  2007年   1篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1992年   2篇
  1991年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
1.
Xu  Zeng-Fu  Qi  Wen-Qing  Ouyang  Xue-Zhi  Yeung  Edward  Chye  Mee-Len 《Plant molecular biology》2001,47(6):727-738
Although proteinase inhibitor proteins are known to confer insect resistance in transgenic plants, their endogenous roles remain undefined. Here, we describe the expression of a proteinase inhibitor II (PIN2) protein from Solanum americanum in phloem of stems, roots and leaves suggesting a novel endogenous role for PIN2 in phloem. The phloem consists of parenchyma cells, sieve elements (SE), and companion cells (CC) which are in close association with SE. We isolated two cDNAs encoding PIN2, SaPIN2a and SaPIN2b, from a S. americanum cDNA library using a tomato PIN2 cDNA as hybridization probe. SaPIN2a shows 73.6% identity to SaPIN2b. Southern blot analysis confirmed that two genes occur in S. americanum. Northern blot analysis showed that both are wound-inducible and are expressed in flowers. Unlike SaPIN2b and other previously characterized plant PIN2 proteins, SaPIN2a is abundantly expressed in stems. In situ hybridization studies on stem sections showed that SaPIN2a mRNA is expressed in CC and some SE, likely the immature developing SE, of external and internal phloem. Western blot analysis using SaPIN2a-specific antibodies showed SaPIN2a accumulation in stems, leaf midribs and fruits. Immunohistochemical localization, using these antibodies, revealed SaPIN2a expression in external and internal phloem of stem. Immunoelectron microscopy of stem, root and leaf sections further localized SaPIN2a to the CC and predominantly to the SE, particularly the parietal cytoplasm adjacent to the cell wall, the lumen and the sieve-area pores. These results suggest that, other than a possible role in plant defense, SaPIN2a could be involved in regulating proteolysis in the SE.  相似文献   
2.
Lipid trafficking is vital for metabolite exchange and signal communications between organelles and endomembranes. Acyl-CoA-binding proteins (ACBPs) are involved in the intracellular transport, protection, and pool formation of acyl-CoA esters, which are important intermediates and regulators in lipid metabolism and cellular signaling. In this review, we highlight recent advances in our understanding of plant ACBP families from a cellular and developmental perspective. Plant ACBPs have been extensively studied in Arabidopsis thaliana (a dicot) and to a lesser extent in Oryza sativa (a monocot). Thus far, they have been detected in the plasma membrane, vesicles, endoplasmic reticulum, Golgi apparatus, apoplast, cytosol, nuclear periphery, and peroxisomes. In combination with biochemical and molecular genetic tools, the widespread subcellular distribution of respective ACBP members has been explicitly linked to their functions in lipid metabolism during development and in response to stresses. At the cellular level, strong expression of specific ACBP homologs in specialized cells, such as embryos, stem epidermis, guard cells, male gametophytes, and phloem sap, is of relevance to their corresponding distinct roles in organ development and stress responses. Other interesting patterns in their subcellular localization and spatial expression that prompt new directions in future investigations are discussed.  相似文献   
3.
4.
ACBPs are implicated in acyl-CoA trafficking in many eukaryotes and some prokaryotes. Six genes encode proteins designated as AtACBP1-AtACBP6 in the Arabidopsis thaliana ACBP family. These ACBPs are conserved in the acyl-CoA-binding domain, but vary in size from 92 amino acids (10.4 kDa) to 668 amino acids (73.1 kDa), and are subcellularly localised to different compartments in plant cells. Results from in vitro binding assays show that their corresponding recombinant proteins exhibit differential binding affinities to acyl-CoA esters and phospholipids, implying that these ACBPs may have non-redundant biological functions in vivo. By using knockout/downregulated and overexpression lines of Arabidopsis ACBPs, recent investigations have revealed that in addition to their proposed roles in phospholipid metabolism, these ACBPs can influence plant development including early embryogenesis and leaf senescence, as well as plant stress responses including heavy metal resistance, oxidative stress, freezing tolerance and pathogen resistance. In this review, recent progress on the biochemical and functional analyses of Arabidopsis ACBPs, their links to metabolic/signalling pathways, and their potential applications in development of stress tolerance are discussed.  相似文献   
5.
Brassica juncea BjCHI1 is a plant chitinase with two chitin-binding domains. Its expression, induced in response to wounding, methyl jasmonate treatment, Aspergillus niger infection, and caterpillar Pieris rapae feeding, suggests that it plays a role in defence. In this study, to investigate the potential of using BjCHI1 in agriculture, Pichia-expressed BjCHI1 and its deletion derivatives that lack one or both chitin-binding domains were tested against phytopathogenic fungi and bacteria. Transplastomic tobacco expressing BjCHI1 was also generated and its extracts assessed. In radial growth-inhibition assays, BjCHI1 and its derivative with one chitin-binding domain showed anti-fungal activities against phytopathogens, Colletotrichum truncatum, C. acutatum, Botrytis cinerea, and Ascochyta rabiei. BjCHI1 also inhibited spore germination of C. truncatum. Furthermore, BjCHI1, but not its derivatives lacking one or both domains, inhibited the growth of Gram-negative bacteria (Escherichia coli, Ralstonia solanacearum, Pseudomonas aeruginosa) more effectively than Gram-positive bacteria (Micrococcus luteus and Bacillus megaterium), indicating that the duplicated chitin-binding domain, uncommon in chitinases, is essential for bacterial agglutination. Galactose, glucose, and lactose relieved agglutination, suggesting that BjCHI1 interacts with the carbohydrate components of the Gram-negative bacterial cell wall. Retention of chitinase and bacterial agglutination activities in transplastomic tobacco extracts implicates that BjCHI1 is potentially useful against both fungal and bacterial phytopathogens in agriculture.  相似文献   
6.
In our recent paper in the Plant Journal, we reported that Arabidopsis thaliana lysophospholipase 2 (lysoPL2) binds acyl-CoA-binding protein 2 (ACBP2) to mediate cadmium [Cd(II)] tolerance in transgenic Arabidopsis. ACBP2 contains ankyrin repeats that have been previously shown to mediate protein-protein interactions with an ethylene-responsive element binding protein (AtEBP) and a farnesylated protein 6 (AtFP6). Transgenic Arabidopsis ACBP2-overexpressors, lysoPL2-overexpressors and AtFP6-overexpressors all display enhanced Cd(II) tolerance, in comparison to wild type, suggesting that ACBP2 and its protein partners work together to mediate Cd(II) tolerance. Given that recombinant ACBP2 and AtFP6 can independently bind Cd(II) in vitro, they may be able to participate in Cd(II) translocation. The binding of recombinant ACBP2 to [14C]linoleoyl-CoA and [14C]linolenoyl-CoA implies its role in phospholipid repair. In conclusion, ACBP2 can mediate tolerance to Cd(II)-induced oxidative stress by interacting with two protein partners, AtFP6 and lysoPL2. Observations that ACBP2 also binds lysophosphatidylcholine (lysoPC) in vitro and that recombinant lysoPL2 degrades lysoPC, further confirm an interactive role for ACBP2 and lysoPL2 in overcoming Cd(II)-induced stress.Key words: acyl-CoA-binding protein, cadmium, hydrogen peroxide, lysophospholipase, oxidative stressAcyl-CoA-binding proteins (ACBP1 to ACBP6) are encoded by a multigene family in Arabidopsis thaliana.1 These ACBP proteins are well studied in Arabidopsis in comparison to other organisms,14 and are located in various subcellular compartments.1 Plasma membranelocalized ACBP1 and ACBP2 contain ankyrin repeats that have been shown to function in protein-protein interactions.5,6 ACBP1 and ACBP2 which share 76.9% amino acid identity also confer tolerance in transgenic Arabidopsis to lead [Pb(II)] and Cd(II), respectively.1,5,7 Since recombinant ACBP1 and ACBP2 bind linolenoyl-CoA and linoleoyl-CoA in vitro, they may possibly be involved in phospholipid repair in response to heavy metal stress at the plasma membrane.5,7 In contrast, ACBP3 is an extracellularly-localized protein8 while ACBP4, ACBP5 and ACBP6 are localized to cytosol.9,10 ACBP1 and ACBP6 have recently been shown to be involved in freezing stress.9,11 ACBP4 and ACBP5 bind oleoyl-CoA ester and their mRNA expressions are lightregulated.12,13 Besides acyl-CoA esters, some ACBPs also bind phospholipids.9,11,13 To investigate the biological function of ACBP2, we have proceeded to establish its interactors at the ankyrin repeats, including AtFP6,5 AtEBP6 and now lysoPL2 in the Plant Journal paper. While the significance in the interaction of ACBP2 with AtEBP awaits further investigations, some parallels can be drawn between those of ACBP2 with AtFP6 and with lysoPL2.  相似文献   
7.
Xu ZF  Teng WL  Chye ML 《Planta》2004,218(4):623-629
SaPIN2a, a proteinase inhibitor II from American black nightshade (Solanum americanum Mill.) is highly expressed in the phloem and could be involved in regulating proteolysis in the sieve elements. To further investigate the physiological role of SaPIN2a, we have produced transgenic lettuce (Lactuca sativa L.) expressing SaPIN2a from the CaMV35S promoter by Agrobacterium-mediated transformation. Stable integration of the SaPIN2a cDNA and its inheritance in transgenic lines were confirmed by Southern blot analysis and segregation analysis of the R1 progeny. SaPIN2a mRNA was detected in both the R0 and R1 transformants on northern blot analysis but the SaPIN2a protein was not detected on western blot analysis using anti-peptide antibodies against SaPIN2a. Despite an absence of significant inhibitory activity against bovine trypsin and chymotrypsin in extracts of transgenic lettuce, the endogenous trypsin-like activity in each transgenic line was almost completely inhibited, and the endogenous chymotrypsin-like activity moderately inhibited. Our finding that heterogeneously expressed SaPIN2a in transgenic lettuce inhibits plant endogenous protease activity further indicates that SaPIN2a regulates proteolysis, and could be potentially exploited for the protection of foreign protein production in transgenic plants.Abbreviations CaMV cauliflower mosaic virus - cDNA complementary DNA - NOS nopaline synthase - PAGE polyacrylamide gel electrophoresis - PI proteinase inhibitor - SaPIN2a Solanum americanum proteinase inhibitor IIa - SDS sodium dodecyl sulphate - T-DNA transferred DNA  相似文献   
8.
9.
A cDNA clone encoding Brassica calmodulin   总被引:2,自引:0,他引:2  
A 834 bp cDNA encoding calmodulin (CaM) has been isolated from Brassica juncea. On Northern analysis this cDNA hybridises this cDNA to mRNAs of about 0.9 kb in leaf, silique and peduncle. Genomic Southern analysis indicates the presence of a CaM multigene family in Brassica juncea. Comparison of the predicted amino acid sequence of Brassica CaM with that of Arabidopsis CaM ACaM-2 and ACaM-3 showed 100% homology, which is not unusual, since both plants belong to the family Cruciferae. In situ hybridisation studies on Brassica seedlings using a digoxigenin-labelled RNA probe showed that high levels of CaM mRNA were detected in the leaf primordia and the shoot apical meristem, and to a lesser degree, in the zone of root elongation of the root tip. The occurrence of a higher rate of cell division and growth in these regions than its surrounding tissue may possibly be related to higher levels of CaM mRNA.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号