首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   32篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   15篇
  2013年   8篇
  2012年   12篇
  2011年   15篇
  2010年   10篇
  2009年   12篇
  2008年   16篇
  2007年   12篇
  2006年   11篇
  2005年   8篇
  2004年   9篇
  2003年   8篇
  2002年   11篇
  2001年   10篇
  2000年   9篇
  1999年   9篇
  1998年   10篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   5篇
  1993年   8篇
  1992年   10篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1970年   2篇
排序方式: 共有263条查询结果,搜索用时 46 毫秒
1.
A proliferation-inducing ligand (APRIL), a member of the TNF ligand superfamily with an important role in humoral immunity, is also implicated in several cancers as a prosurvival factor. APRIL binds two different TNF receptors, B cell maturation antigen (BCMA) and transmembrane activator and cylclophilin ligand interactor (TACI), and also interacts independently with heparan sulfate proteoglycans. Because APRIL shares binding of the TNF receptors with B cell activation factor, separating the precise signaling pathways activated by either ligand in a given context has proven quite difficult. In this study, we have used the protein design algorithm FoldX to successfully generate a BCMA-specific variant of APRIL, APRIL-R206E, and two TACI-selective variants, D132F and D132Y. These APRIL variants show selective activity toward their receptors in several in vitro assays. Moreover, we have used these ligands to show that BCMA and TACI have a distinct role in APRIL-induced B cell stimulation. We conclude that these ligands are useful tools for studying APRIL biology in the context of individual receptor activation.  相似文献   
2.
3.
Hydrogen is a promising alternative as an energetic carrier and its production by dark fermentation from wastewater has been recently proposed, with special attention to crude glycerol as potential substrate. In this study, two different feeding strategies were evaluated for replacing the glucose substrate by glycerol substrate: a one-step strategy (glucose was replaced abruptly by glycerol) and a step-by-step strategy (progressive decrease of glucose concentration and increase of glycerol concentration from 0 to 5 g L?1), in a continuous stirred tank reactor (12 h of hydraulic retention time (HRT), pH 5.5, 35 °C). While the one-step strategy led to biomass washout and unsuccessful H2 production, the step-by-step strategy was efficient for biomass adaptation, reaching acceptable hydrogen yields (0.4?±?0.1 molH2?mol?1 glycerol consumed) around 33 % of the theoretical yield independently of the glycerol concentration. Microbial community structure was investigated by single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) fingerprinting techniques, targeting either the total community (16S ribosomal RNA (rRNA) gene) or the functional Clostridium population involved in H2 production (hydA gene), as well as by 454 pyrosequencing of the total community. Multivariate analysis of fingerprinting and pyrosequencing results revealed the influence of the feeding strategy on the bacterial community structure and suggested the progressive structural adaptation of the community to increasing glycerol concentrations, through the emergence and selection of specific species, highly correlated to environmental parameters. Particularly, this work highlighted an interesting shift of dominant community members (putatively responsible of hydrogen production in the continuous stirred tank reactor (CSTR)) according to the gradient of glycerol proportion in the feed, from the family Veillonellaceae to the genera Prevotella and Clostridium sp., putatively responsible of hydrogen production in the CSTR.  相似文献   
4.
5.

Background  

Toxoplasma gondii is a zoonotic parasite of global importance. In common with many protozoan parasites it has the capacity for sexual recombination, but current evidence suggests this is rarely employed. The global population structure is dominated by a small number of clonal genotypes, which exhibit biallelic variation and limited intralineage divergence. Little is known of the genotypes present in Africa despite the importance of AIDS-associated toxoplasmosis.  相似文献   
6.
Activation of the DNA damage checkpoint causes a cell‐cycle arrest through inhibition of cyclin‐dependent kinases (cdks). To successfully recover from the arrest, a cell should somehow be maintained in its proper cell‐cycle phase. This problem is particularly eminent when a cell arrests in G2, as cdk activity is important to establish a G2 state. Here, we identify the phosphatase Wip1 (PPM1D) as a factor that maintains a cell competent for cell‐cycle re‐entry during an ongoing DNA damage response in G2. We show that Wip1 function is required throughout the arrest, and that Wip1 acts by antagonizing p53‐dependent repression of crucial mitotic inducers, such as Cyclin B and Plk1. Our data show that the primary function of Wip1 is to retain cellular competence to divide, rather than to silence the checkpoint to promote recovery. Our findings uncover Wip1 as a first in class recovery competence gene, and suggest that the principal function of Wip1 in cellular transformation is to retain proliferative capacity in the face of oncogene‐induced stress.  相似文献   
7.
Renal fibrosis is the common histological feature of advanced glomerular and tubulointerstitial disease leading to end-stage renal disease (ESRD). However, specific antifibrotic therapies to slow down the evolution to ESRD are still absent. Because persistent inflammation is a key event in the development of fibrosis, we hypothesized that the proinflammatory kinin B1 receptor (B1R) could be such a new target. Here we show that, in the unilateral ureteral obstruction model of renal fibrosis, the B1R is overexpressed and that delayed treatment with an orally active nonpeptide B1R antagonist blocks macrophage infiltration, leading to a reversal of the level of renal fibrosis. In vivo bone marrow transplantation studies as well as in vitro studies on renal cells show that part of this antifibrotic mechanism of B1R blockade involves a direct effect on resident renal cells by inhibiting chemokine CCL2 and CCL7 expression. These findings suggest that blocking the B1R is a promising antifibrotic therapy.  相似文献   
8.
Cassava is infected by numerous geminiviruses in Africa and India that cause devastating losses to poor farmers. We here describe the molecular diversity of seven representative cassava mosaic geminiviruses (CMGs) infecting cassava from multiple locations in Tanzania. We report for the first time the presence of two isolates in East Africa: (EACMCV-[TZ1] and EACMCV-[TZ7]) of the species East African cassava mosaic Cameroon virus, originally described in West Africa. The complete nucleotide sequence of EACMCV-[TZ1] DNA-A and DNA-B components shared a high overall sequence identity to EACMCV-[CM] components (92% and 84%). The EACMCV-[TZ1] and -[TZ7] genomic components have recombinations in the same genome regions reported in EACMCV-[CM], but they also have additional recombinations in both components. Evidence from sequence analysis suggests that the two strains have the same ancient origin and are not recent introductions. EACMCV-[TZ1] occurred widely in the southern part of the country. Four other CMG isolates were identified: two were close to the EACMV-Kenya strain (named EACMV-[KE/TZT] and EACMV-[KE/TZM] with 96% sequence identity); one isolate, TZ10, had 98% homology to EACMV-UG2Svr and was named EACMV-UG2 [TZ10]; and finally one isolate was 95% identical to EACMV-[TZ] and named EACMV-[TZ/YV]. One isolate of African cassava mosaic virus with 97% sequence identity with other isolates of ACMV was named ACMV-[TZ]. It represents the first ACMV isolate from Tanzania to be sequenced. The molecular variability of CMGs was also evaluated using partial B component nucleotide sequences of 13 EACMV isolates from Tanzania. Using the sequences of all CMGs currently available, we have shown the presence of a number of putative recombination fragments that are more prominent in all components of EACMV than in ACMV. This new knowledge about the molecular CMG diversity in East Africa, and in Tanzania in particular, has led us to hypothesize about the probable importance of this part of Africa as a source of diversity and evolutionary change both during the early stages of the relationship between CMGs and cassava and in more recent times. The existence of multiple CMG isolates with high DNA genome diversity in Tanzania and the molecular forces behind this diversity pose a threat to cassava production throughout the African continent.  相似文献   
9.
10.
Bacterial secondary metabolites are widely used as antibiotics, anticancer drugs, insecticides and food additives. Attempts to engineer their biosynthetic gene clusters (BGCs) to produce unnatural metabolites with improved properties are often frustrated by the unpredictability and complexity of the enzymes that synthesize these molecules, suggesting that genetic changes within BGCs are limited by specific constraints. Here, by performing a systematic computational analysis of BGC evolution, we derive evidence for three findings that shed light on the ways in which, despite these constraints, nature successfully invents new molecules: 1) BGCs for complex molecules often evolve through the successive merger of smaller sub-clusters, which function as independent evolutionary entities. 2) An important subset of polyketide synthases and nonribosomal peptide synthetases evolve by concerted evolution, which generates sets of sequence-homogenized domains that may hold promise for engineering efforts since they exhibit a high degree of functional interoperability, 3) Individual BGC families evolve in distinct ways, suggesting that design strategies should take into account family-specific functional constraints. These findings suggest novel strategies for using synthetic biology to rationally engineer biosynthetic pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号