首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2003年   1篇
排序方式: 共有11条查询结果,搜索用时 17 毫秒
1.
HIV/AIDS has become the most devastating pandemic in recorded history. It has killed 40 million people in the last 20 years and the World Health Organisation estimated that at least 14,000 new infections occurred daily in 2001. There will be up to 100 million new infections in the next 10 years (for current updates, visit http://www.unaids.org/epidemic_update/). Most HIV infections occur in the developing world, and the adverse social and economic impact of the HIV/AIDS pandemic, particularly in the developing world, is unprecedented. Highly active antiretroviral therapy (HAART) has had significant effects on HIV/AIDS in the developed world. The drugs have acted to prolong survival, reduce the viral load, and to alleviate suffering. However, the incidence of side effects and resistance is high and the drugs are unaffordable and unavailable in the developing world. HAART regimens are difficult to comply with. Public health efforts to modify the behaviour, attitude and culture that accelerate the spread of HIV/AIDS have had only modest success. There is urgent need for a prophylactic and/or therapeutic HIV vaccine. This is a review of the obstacles and current trends in HIV vaccine development.  相似文献   
2.

Objective

Though absolute CD4+ T cell enumeration is the primary gateway to antiretroviral therapy initiation for HIV-positive patients in all developing countries, patient access to this critical diagnostic test is relatively poor. We technically evaluated the performance of a newly developed point-of-care CD4+ T cell technology, the MyT4, compared with conventional CD4+ T cell testing technologies.

Design

Over 250 HIV-positive patients were consecutively enrolled and their blood tested on the MyT4, BD FACSCalibur, and BD FACSCount.

Results

Compared with the BD FACSCount, the MyT4 had an r2 of 0.7269 and a mean bias of −23.37 cells/µl. Compared with the BD FACSCalibur, the MyT4 had an r2 of 0.5825 and a mean bias of −46.58 cells/µl. Kenya currently uses a CD4+ T cell test threshold of 350 cells/µl to determine patient eligibility for antiretroviral therapy. At this threshold, the MyT4 had a sensitivity of 95.3% (95% CI: 88.4–98.7%) and a specificity of 87.9% (95% CI: 82.3–92.3%) compared with the BD FACSCount and sensitivity and specificity of 88.2% (95% CI: 79.4–94.2%) and 84.2% (95% CI: 78.2–89.2%), respectively, compared with the BD FACSCalibur. Finally, the MyT4 had a coefficient of variation of 12.80% compared with 14.03% for the BD FACSCalibur.

Conclusions

We conclude that the MyT4 performed well at the current 350 cells/µl ART initiation eligibility threshold when used by lower cadres of health care facility staff in rural clinics compared to conventional CD4+ T cell technologies.  相似文献   
3.

Background

A strategy to combat infectious diseases, including neglected tropical diseases (NTDs), will depend on the development of reliable epidemiological surveillance methods. To establish a simple and practical seroprevalence detection system, we developed a microsphere-based multiplex immunoassay system and evaluated utility using samples obtained in Kenya.

Methods

We developed a microsphere-based immuno-assay system to simultaneously measure the individual levels of plasma antibody (IgG) against 8 antigens derived from 6 pathogens: Entamoeba histolytica (C-IgL), Leishmania donovani (KRP42), Toxoplasma gondii (SAG1), Wuchereria bancrofti (SXP1), HIV (gag, gp120 and gp41), and Vibrio cholerae (cholera toxin). The assay system was validated using appropriate control samples. The assay system was applied for 3411 blood samples collected from the general population randomly selected from two health and demographic surveillance system (HDSS) cohorts in the coastal and western regions of Kenya. The immunoassay values distribution for each antigen was mathematically defined by a finite mixture model, and cut-off values were optimized.

Findings

Sensitivities and specificities for each antigen ranged between 71 and 100%. Seroprevalences for each pathogen from the Kwale and Mbita HDSS sites (respectively) were as follows: HIV, 3.0% and 20.1%; L. donovani, 12.6% and 17.3%; E. histolytica, 12.8% and 16.6%; and T. gondii, 30.9% and 28.2%. Seroprevalences of W. bancrofti and V. cholerae showed relatively high figures, especially among children. The results might be affected by immunological cross reactions between W. bancrofti-SXP1 and other parasitic infections; and cholera toxin and the enterotoxigenic E. coli (ETEC), respectively.

Interpretation

A microsphere-based multi-serological assay system can provide an opportunity to comprehensively grasp epidemiological features for NTDs. By adding pathogens and antigens of interest, optimized made-to-order high-quality programs can be established to utilize limited resources to effectively control NTDs in Africa.  相似文献   
4.

Background

Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis. To detect RVF virus (RVFV) infection, indirect immunoglobulin G (IgG) and immunoglobulin M (IgM) enzyme linked immunosorbent assays (ELISAs) which utilize recombinant RVFV nucleocapsid (RVFV-N) protein as assay antigen, have reportedly been used, however, there is still a need to develop more sensitive and specific methods of detection.

Methods

RVFV-N protein was expressed in Escherichia coli (E. coli) and purified by histidine-tag based affinity chromatography. This recombinant RVFV-N (rRVFV-N) protein was then used as antigen to develop an IgG sandwich ELISA and IgM capture ELISAs for human sera. Ninety six serum samples collected from healthy volunteers during the RVF surveillance programme in Kenya in 2013, and 93 serum samples collected from RVF-suspected patients during the 2006–2007 RVF outbreak in Kenya were used respectively, to evaluate the newly established rRVFV-N protein-based IgG sandwich ELISA and IgM capture ELISA systems in comparison with the inactivated virus-based ELISA systems.

Results

rRVFV-N protein-based-IgG sandwich ELISA and IgM capture ELISA for human sera were established. Both the new ELISA systems were in 100% concordance with the inactivated virus-based ELISA systems, with a sensitivity and specificity of 100%.

Conclusions

Recombinant RVFV-N is a safe and affordable antigen for RVF diagnosis. Our rRVFV-N-based ELISA systems are safe and reliable tools for diagnosis of RVFV infection in humans and especially useful in large-scale epidemiological investigation and for application in developing countries.
  相似文献   
5.

Background

Both Schistosoma mansoni and Schistosoma haematobium cause schistosomiasis in sub-Saharan Africa. We assessed the diagnostic value of selected Schistosoma antigens for the development of a multiplex serological immunoassay for sero-epidemiological surveillance.

Methodology/Principal Findings

Diagnostic ability of recombinant antigens from S. mansoni and S. haematobium was assessed by Luminex multiplex immunoassay using plasma from school children in two areas of Kenya, endemic for different species of schistosomiasis. S. mansoni serine protease inhibitor (SERPIN) and Sm-RP26 showed significantly higher reactivity to patient plasma as compared to the control group. Sm-Filamin, Sm-GAPDH, Sm-GST, Sm-LAP1, Sm-LAP2, Sm-Sm31, Sm-Sm32 and Sm-Tropomyosin did not show difference in reactivity between S. mansoni infected and uninfected pupils. Sm-RP26 was cross-reactive to plasma from S. haematobium patients, whereas Sm-SERPIN was species-specific. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. ROC analysis for Sm-RP26, Sm-SERPIN and Sh-SERPIN showed AUC values of 0.833, 0.888 and 0.947, respectively. Using Spearman’s rank correlation coefficient analysis, we also found significant positive correlation between the number of excreted eggs and median fluorescence intensity (MFI) from the multiplex immunoassays for Sm-SERPIN (ρ = 0.430, p-value = 0.003) and Sh-SERPIN (ρ = 0.433, p-value = 0.006).

Conclusions/Significance

Sm-SERPIN is a promising species-specific diagnostic antigen. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. SERPINs showed correlation with the number of excreted eggs. These indicate prospects for inclusion of SERPINs in the multiplex serological immunoassay system.  相似文献   
6.

Background

HIV-1 and Hepatitis B and C viruses coinfection is common in Sub-Saharan Africa due to similar routes of transmission and high levels of poverty. Most studies on HIV-1 and Hepatitis B and C viruses have occurred in hospital settings and blood transfusion units. Data on Hepatitis B and C viruses and HIV-1 coinfection in informal urban settlements in Kenya are scanty, yet they could partly explain the disproportionately high morbidity and mortality associated with HIV-1 infections in these slums.

Objectives

The objective of this study was to determine the prevalence of HIV and Hepatitis B and C dual infection in urban slums in Nairobi.

Methods

Blood samples were collected from residents of Viwandani and Korogocho between 2006 and 2007. A structured questionnaire was used to obtain socio-demographic data from participants. Samples were screened for Hepatitis B surface antigen (HBsAg), anti-HCV and anti-HIV-1. Statistical analysis was done using STATA.

Results

Samples were successfully collected from 418 (32%) men and 890 (68%) females. The HIV-1, HBV and HCV prevalence was 20.4%, 13.3% and 0.76% respectively at the time of the study. Of the 268 (20.4%) HIV-1 positive participants, 56 (4.26%) had HBV while 6 (0.46%) had HCV. Of the 1041 HIV-1 negative participants, 117 (8.9%) had HBV while 4 (0.31%) had HCV. Only two people (0.15%) were co-infected with all the three viruses together.

Discussion

The odds of getting hepatitis infection were higher in HIV-1 participants (for HBV OR 2.08,p<0.005 and for HCV OR 5.93, p<0.005). HIV prevalence rates were similar in both informal settlements. HIV infection was highest in age group 35-39 years and among the divorced/separated or widowed. Prevalence of all viruses was highest in those who did not have any formal education.

Conclusion

The HIV prevalence in these informal settlements suggests a higher rate than what is observed nationally. The prevalence rates of HBV are significantly higher in the HIV-1 positive and negative populations. HCV as well as triple HIV-1, HBV and HCV coinfection are uncommon in Korogocho and Viwandani. This clearly indicates the need for HIV-1 control programmes and hepatitis B virus vaccination to be promoted through public awareness as preventive strategy.  相似文献   
7.

Background

In resource-limited settings where viral load (VL) monitoring is scarce or unavailable, clinicians must use immunological and clinical criteria to define HIV virological treatment failure. This study examined the performance of World Health Organization (WHO) clinical and immunological failure criteria in predicting virological failure in HIV patients receiving antiretroviral therapy (ART).

Methods

In a HIV/AIDS program in Busia District Hospital, Kenya, a retrospective, cross-sectional cohort analysis was performed in April 2008 for all adult patients (>18 years old) on ART for ≥12 months, treatment-naive at ART start, attending the clinic at least once in last 6 months, and who had given informed consent. Treatment failure was assessed per WHO clinical (disease stage 3 or 4) and immunological (CD4 cell count) criteria, and compared with virological failure (VL >5,000 copies/mL).

Results

Of 926 patients, 123 (13.3%) had clinically defined treatment failure, 53 (5.7%) immunologically defined failure, and 55 (6.0%) virological failure. Sensitivity, specificity, positive predictive value, and negative predictive value of both clinical and immunological criteria (combined) in predicting virological failure were 36.4%, 83.5%, 12.3%, and 95.4%, respectively.

Conclusions

In this analysis, clinical and immunological criteria were found to perform relatively poorly in predicting virological failure of ART. VL monitoring and new algorithms for assessing clinical or immunological treatment failure, as well as improved adherence strategies, are required in ART programs in resource-limited settings.  相似文献   
8.
CD4+ T cell enumeration is used to determine eligibility for antiretroviral therapy (ART) and to monitor the immune status of HIV-positive patients; however, many patients do not have access to this essential diagnostic test. Introducing point of care (POC) testing may improve access. We have evaluated Alere’s PIMA™, one such POC device, against conventional CD4+ testing platforms to determine its performance and validity for use in Kenya. In our hands, Alere PIMA™ had a coefficient of variability of 10.3% and of repeatability of 175.6 cells/µl. It differed from both the BD FACSCalibur™ (r2 = 0.762, mean bias −64.8 cells/µl), and the BD FACSCount™ (r2 = 0.874, mean bias 7.8 cells/µl). When compared to the FACSCalibur™ at a cutoff of 350 cells/µl, it had a sensitivity of 89.6% and a specificity of 86.7% in those aged 5 years and over (Kw = 0.7566). With the BD FACSCount™, it had a sensitivity of 79.4% and a specificity of 83.4% in those aged 5 years and over (Kw = 0.7790). The device also differed from PARTEC Cyflow™ (r2 = 0.781, mean bias −24.2 cells/µl) and GUAVA™ (r2 = 0.658, mean bias −0.3 cells/µl) platforms, which are used in some facilities in Kenya. We conclude that with refinement, Alere PIMA™ technology has potential benefits for HIV-positive patients. This study highlights the difficulty in selecting the most appropriate reference technology for technical evaluations.  相似文献   
9.

Objective

Currently 50% of ART eligible patients are not yet receiving life-saving antiretroviral therapy (ART). Financial constraints do not allow most developing countries to adopt a universal test and offer ART strategy. Decentralizing CD4+ T cell testing may, therefore, provide greater access to testing, ART, and better patient management. We evaluated the technical performance of a new point-of-care CD4+ T cell technology, the BD FACSPresto, in a field methods comparison study.

Methods

264 HIV-positive patients were consecutively enrolled and included in the study. The BD FACSPresto POC CD4+ T cell technology was placed in two rural health care facilities and operated by health care facility staff. We compared paired finger-prick and venous samples using the BD FACSPresto and several existing reference technologies, respectively.

Results

The BD FACSPresto had a mean bias of 67.29 cells/ul and an r2 of 0.9203 compared to the BD FACSCalibur. At ART eligibility thresholds of 350 and 500 cells/ul, the sensitivity to define treatment eligibility were 81.5% and 77.2% and the specificities were 98.9% and 100%, respectively. Similar results were observed when the BD FACSPresto was compared to the BD FACSCount and Alere Pima. The coefficient of variation (CV) was less than 7% for both the BD FACSCalibur and BD FACSPresto. CD4+ T cell testing by nurses using the BD FACSPresto at rural health care facilities showed high technical similarity to test results generated by laboratory technicians using the BD FACSPresto in a high functioning laboratory.

Conclusions

The BD FACSPresto performed favorably in the laboratory setting compared to the conventional reference standard technologies; however, the lower sensitivities indicated that up to 20% of patients tested in the field in need of treatment would be missed. The BD FACSPresto is a technology that can allow for greater decentralization and wider access to CD4+ T cell testing and ART.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号