首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future biomechanical assessments of extinct taxa should be preceded by a detailed investigation of the plausible range of mass properties, in which sensitivity analyses are used to identify a suite of possible values to be tested as inputs in analytical models.  相似文献   

2.
Locomotion in terrestrial tetrapods is reliant on interactions between distal limb bones (e.g. metapodials and phalanges). The metapodial–phalangeal joint in horse (Equidae) limbs is highly specialized, facilitating vital functions (shock absorption; elastic recoil). While joint shape has changed throughout horse evolution, potential drivers of these modifications have not been quantitatively assessed. Here, I examine the morphology of the forelimb metacarpophalangeal (MCP) joint of horses and their extinct kin (palaeotheres) using geometric morphometrics and disparity analyses, within a phylogenetic context. I also develop a novel alignment protocol that explores the magnitude of shape change through time, correlated against body mass and diet. MCP shape was poorly correlated with mass or diet proxies, although significant temporal correlations were detected at 0–1 Myr intervals. A clear division was recovered between New and Old World hipparionin MCP morphologies. Significant changes in MCP disparity and high rates of shape divergence were observed during the Great American Biotic Interchange, with the MCP joint becoming broad and robust in two separate monodactyl lineages, possibly exhibiting novel locomotor behaviour. This large-scale study of MCP joint shape demonstrates the apparent capacity for horses to rapidly change their distal limb morphology to overcome discrete locomotor challenges in new habitats.  相似文献   

3.
Body mass is a key biological variable, but difficult to assess from fossils. Various techniques exist for estimating body mass from skeletal parameters, but few studies have compared outputs from different methods. Here, we apply several mass estimation methods to an exceptionally complete skeleton of the dinosaur Stegosaurus. Applying a volumetric convex-hulling technique to a digital model of Stegosaurus, we estimate a mass of 1560 kg (95% prediction interval 1082–2256 kg) for this individual. By contrast, bivariate equations based on limb dimensions predict values between 2355 and 3751 kg and require implausible amounts of soft tissue and/or high body densities. When corrected for ontogenetic scaling, however, volumetric and linear equations are brought into close agreement. Our results raise concerns regarding the application of predictive equations to extinct taxa with no living analogues in terms of overall morphology and highlight the sensitivity of bivariate predictive equations to the ontogenetic status of the specimen. We emphasize the significance of rare, complete fossil skeletons in validating widely applied mass estimation equations based on incomplete skeletal material and stress the importance of accurately determining specimen age prior to further analyses.  相似文献   

4.
To identify behaviorally significant differences in bone structure it is first necessary to control for the effects of body size and body shape. Here the scaling of cross-sectional geometric properties of long bone diaphyses with different "size" measures (bone length, body mass, and the product of bone length and body mass) are compared in two modern human populations with very different body proportions: Pecos Pueblo Amerindians and East Africans. All five major long bones (excluding the fibula) were examined. Mechanical predictions are that cortical area (axial strength) should scale with body mass, while section modulus (bending/torsional strength) should scale with the product of body mass and moment arm length. These predictions are borne out for section moduli, when moment arm length is taken to be proportional to bone length, except in the proximal femoral diaphysis, where moment arm length is proportional to mediolateral body breadth (as would be expected given the predominance of M-L bending loads in this region). Mechanical scaling of long bone bending/torsional strength is similar in the upper and lower limbs despite the fact that the upper limb is not weight-bearing. Results for cortical area are more variable, possibly due to a less direct dependence on mechanical factors. Use of unadjusted bone length alone as a "size" measure produces misleading results when body shape varies significantly, as is the case between many modern and fossil hominid samples. In such cases a correction factor for body shape should be incorporated into any "size" standardization.  相似文献   

5.
Discovery of the first complete Early Pleistocene hominin pelvis, Gona BSN49/P27, attributed to Homo erectus, raises a number of issues regarding early hominin body size and shape variation. Here, acetabular breadth, femoral head breadth, and body mass calculated from femoral head breadth are compared in 37 early hominin (6.0-0.26 Ma) specimens, including BSN49/P27. Acetabular and estimated femoral head sizes in the Gona specimen fall close to the means for non-Homo specimens (Orrorin tugenesis, Australopithecus africanus, Paranthropus robustus), and well below the ranges of all previously described Early and Middle Pleistocene Homo specimens. The Gona specimen has an estimated body mass of 33.2 kg, close to the mean for the non-Homo sample (34.1 kg, range 24-51.5 kg, n = 19) and far outside the range for any previously known Homo specimen (mean = 70.5 kg; range 52-82 kg, n = 17). Inclusion of the Gona specimen within H. erectus increases inferred sexual dimorphism in body mass in this taxon to a level greater than that observed here for any other hominin taxon, and increases variation in body mass within H. erectus females to a level much greater than that observed for any living primate species. This raises questions regarding the taxonomic attribution of the Gona specimen. When considered within the context of overall variation in body breadth among early hominins, the mediolaterally very wide Gona pelvis fits within the distribution of other lower latitude Early and Middle Pleistocene specimens, and below that of higher latitude specimens. Thus, ecogeographic variation in body breadth was present among earlier hominins as it is in living humans. The increased M-L pelvic breadth in all earlier hominins relative to modern humans is related to an increase in ellipticity of the birth canal, possibly as a result of a non-rotational birth mechanism that was common to both australopithecines and archaic Homo.  相似文献   

6.
A three-dimensional reconstruction of the skeleton of the giant rat of Tenerife (Canary Islands, Spain) Canariomys bravoi was obtained by computerized microtomography. Body size, body mass, and body shape were estimated, and limb morphofunctional indices used to infer the style of life of this recently extinct rat. A sample of recent Murinae, including the Philippines endemic giant cloud rat Phloeomys cumingi, was used for comparison. It appears that C. bravoi differed from most continental rats by its relatively large size, body proportions, and tail length. Among its distinctive features, claws almost similarly developed on fore and hind limbs, and feet longer than hands evoke an intermediate body shape between rats and arboreal murines like Phloeomys. C. bravoi was a strong and powerfully muscled rat able to move on different substrates from floor to trees, and probably had digging skills.  相似文献   

7.
In the majority of mammals, the limbs are positioned under the body and play an important role in gravitational support, allowing the transfer of the load and providing stability to the animal. For this reason, an animal's body mass likely has a significant effect on the shape of its limb bones. In the present study, we investigate the influence of body mass variation on the shape of the three long bones of the forelimb in a group of closely‐related species of mammals: the musteloid carnivorans. We use geometric morphometric techniques to quantify forelimb shape; then estimate phylogenetic signal in the shape of each long bone; and, finally, we apply an independent contrasts approach to assess evolutionary associations between forelimb shape and body mass. The results obtained show that body mass evolution is tightly coordinated with the evolution of forelimb shape, although not equally in all elements. In particular, the humeral and radial shapes of heavier species appear better suited for load bearing and load transmission than the ulna. Nevertheless, our results also show that body mass influences only part of forelimb long bone shape and that other factors, such as locomotor ecology, must be considered to fully understand forelimb evolution. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 91–103.  相似文献   

8.
People with spinal cord injury (SCI) experience bone and muscle loss in their paralyzed limbs that is most rapid and severe in the first 3 years after injury. Restoration of mechanical loading through therapeutic physical activity may potentially slow or reverse post-SCI bone loss, however, therapeutic targets cannot be developed without accurate biomechanical models. Obesity is prevalent among SCI population, and it alters body composition and further affects parameters of these models. Here, clinical whole body dual-energy X-ray absorptiometry data from people with acute (n = 39) and chronic (n = 61) SCI were analyzed to obtain anthropometric parameters including segment masses, center of mass location, and radius of gyration for both obese and non-obese individuals. Chronic SCI was associated with higher normalized trunk mass of 3.2%BW and smaller normalized leg mass of 1.8%BW in males, but no significant changes in segment centers of mass or radius of gyration. People with chronic SCI had 58.6% lean mass in the trunk, compared to 66.6% lean mass in those with acute SCI (p = 0.01), with significant changes in all segments. Obesity was associated with an increase in trunk mass proportion of 3.1%BW, proximal shifts in thigh and upper arm center of mass, and changes to thigh and shank radius of gyration. The data presented here can be used to accurately represent the anthropometrics of SCI population in biomechanical studies, considering obesity and injury duration.  相似文献   

9.
10.
New fossil femora attributed to Australopithecus from East Rudolf, Kenya, form the basis for a three-dimensional reconstruction of a complete femur. The reconstruction and the known fossils are compared with the femora of Homo sapiens. Although many of the features of the fossil bones fall within the overall ranges to be found in modern man, there seems, nevertheless, to be a distinctive total pattern in the femoral anatomy of Australopithecus. Biomechanical explanations for this pattern may be possible when other postcranial bones can be reconstructed with the same degree of certainty as the femur.  相似文献   

11.

Background

The best European locality for complete Eocene mammal skeletons is Grube Messel, near Darmstadt, Germany. Although the site was surrounded by a para-tropical rain forest in the Eocene, primates are remarkably rare there, and only eight fragmentary specimens were known until now. Messel has now yielded a full primate skeleton. The specimen has an unusual history: it was privately collected and sold in two parts, with only the lesser part previously known. The second part, which has just come to light, shows the skeleton to be the most complete primate known in the fossil record.

Methodology/Principal Findings

We describe the morphology and investigate the paleobiology of the skeleton. The specimen is described as Darwinius masillae n.gen. n.sp. belonging to the Cercamoniinae. Because the skeleton is lightly crushed and bones cannot be handled individually, imaging studies are of particular importance. Skull radiography shows a host of teeth developing within the juvenile face. Investigation of growth and proportion suggest that the individual was a weaned and independent-feeding female that died in her first year of life, and might have attained a body weight of 650–900 g had she lived to adulthood. She was an agile, nail-bearing, generalized arboreal quadruped living above the floor of the Messel rain forest.

Conclusions/Significance

Darwinius masillae represents the most complete fossil primate ever found, including both skeleton, soft body outline and contents of the digestive tract. Study of all these features allows a fairly complete reconstruction of life history, locomotion, and diet. Any future study of Eocene-Oligocene primates should benefit from information preserved in the Darwinius holotype. Of particular importance to phylogenetic studies, the absence of a toilet claw and a toothcomb demonstrates that Darwinius masillae is not simply a fossil lemur, but part of a larger group of primates, Adapoidea, representative of the early haplorhine diversification.  相似文献   

12.
To enable a quantification of net joint moments and joint reaction forces, indicators of joint loading, this study aimed to locate the mediolateral joint axes of rotation and establish the body segment parameters of the limbs of pigs (Sus scrofa). To locate the joint axes of rotation the scapulohumeral, humeroradial, carpal complex, metacarpophalangeal, coxofemoral, femorotibial, tarsal, and metatarsophalangeal joints from 12 carcasses were studied. The joints were photographed in three positions, bisecting lines drawn at fixed landmarks with their intersection marking the joint axes of rotation. The body segment parameters, i.e. the segment mass, center of mass and moment of inertia were measured on the humerus, radius/ulna, metacarpus, forepastern, foretoe, femur, tibia, metatarsus, hindpastern, and hindtoe segments from five carcasses. The segments were weighed, and their center of mass was found by balancing them. The moments of inertia of the humerus, radius/ulna, femur and tibia were found by rotating the segments. The moments of inertia of the remaining segments were calculated. Generally, the joint axes of rotation were near the attachment site of the lateral collateral ligaments. The forelimb, with segments taken as one, was significantly lighter and shorter than the hindlimb (P < 0.001). In all segments the center of mass was located 31 to 50% distal to the proximal segment end. The segment mass decreased with distance from the trunk, as did the segment moment of inertia. The results may serve as reference on the location of the joint axes of rotation and on the body segment parameters for inverse dynamic modeling of pigs.  相似文献   

13.
Scaling relationships between skeletal dimensions and body mass in extant birds are often used to estimate body mass in fossil crown-group birds, as well as in stem-group avialans. However, useful statistical measurements for constraining the precision and accuracy of fossil mass estimates are rarely provided, which prevents the quantification of robust upper and lower bound body mass estimates for fossils. Here, we generate thirteen body mass correlations and associated measures of statistical robustness using a sample of 863 extant flying birds. By providing robust body mass regressions with upper- and lower-bound prediction intervals for individual skeletal elements, we address the longstanding problem of body mass estimation for highly fragmentary fossil birds. We demonstrate that the most precise proxy for estimating body mass in the overall dataset, measured both as coefficient determination of ordinary least squares regression and percent prediction error, is the maximum diameter of the coracoid’s humeral articulation facet (the glenoid). We further demonstrate that this result is consistent among the majority of investigated avian orders (10 out of 18). As a result, we suggest that, in the majority of cases, this proxy may provide the most accurate estimates of body mass for volant fossil birds. Additionally, by presenting statistical measurements of body mass prediction error for thirteen different body mass regressions, this study provides a much-needed quantitative framework for the accurate estimation of body mass and associated ecological correlates in fossil birds. The application of these regressions will enhance the precision and robustness of many mass-based inferences in future paleornithological studies.  相似文献   

14.
Because of their biomechanical significance, cross-sectional geometric properties of long bone diaphyses (areas, second moments of area) have been increasingly used in a number of form/function studies, e.g., to reconstruct body mass or locomotor mode in fossil primates or to elucidate allometric scaling relationships among extant taxa. In the present study, we test whether these biomechanical section properties can be adequately estimated using biplanar radiographs, as compared to calculations of the same properties from computer digitization of cross-sectional images. We are particularly interested in smaller animals, since the limb bone cortices of these animals may not be resolvable using other alternative noninvasive techniques (computed tomography). The test sample includes limb bones of small (25–5,000 g) relatively generalized quadrupedal mammals—mice, six species of squirrels, and Macaca fascicularis. Results indicate that biplanar radiographs are reasonable substitutes for digitized cross-sectional images for deriving areas and second moments of area of midshaft femora and humeri of mammals in this size range. Potential application to a variety of questions relating to mechanical loading patterns in such animals is diverse. © 1993 Wiley-Liss, Inc.  相似文献   

15.
16.
The co-occurrence of vertebrate trace and body fossils within a single geological formation is rare and the probability of these parallel records being contemporaneous (i.e. on or near the same bedding plane) is extremely low. We report here a late Pleistocene locality from the Victorian Volcanic Plains in south-eastern Australia in which demonstrably contemporaneous, but independently accumulated vertebrate trace and body fossils occur. Bite marks from a variety of taxa are also present on the bones. This site provides a unique opportunity to examine the biases of these divergent fossil records (skeletal, footprints and bite marks) that sampled a single fauna. The skeletal record produced the most complete fauna, with the footprint record indicating a markedly different faunal composition with less diversity and the feeding traces suggesting the presence, amongst others, of a predator not represented by either the skeletal or footprint records. We found that the large extinct marsupial predator Thylacoleo was the only taxon apparently represented by all three records, suggesting that the behavioral characteristics of large carnivores may increase the likelihood of their presence being detected within a fossil fauna. In contrast, Diprotodon (the largest-ever marsupial) was represented only by trace fossils at this site and was absent from the site''s skeletal record, despite its being a common and easily detected presence in late Pleistocene skeletal fossil faunas elsewhere in Australia. Small mammals absent from the footprint record for the site were represented by skeletal fossils and bite marks on bones.  相似文献   

17.
The geometry of the midshaft cross-sections of the femur and humerus of five indriid species was analysed. Internal (marrow cavity) and external diameters were measured on X-rays in the anteroposterior (a-p) and mediolateral (m-l) planes; cross-sectional areas, second moments of area, and section moduli were calculated using formulae for a hollow ellipse. Cortical thickness, robusticity indices (relating external diameters to the length of the bones), and a-p/m-l shape variables were also calculated. Model II regression was supplemented by analyses of correlation between size and shape. Indriids are saltatory, i.e., their locomotion is dominated by the hind limbs. Accordingly, the femur is more rigid than the humerus, and it shows a consistent difference between the a-p and m-l planes in measures related to bending strength. Cortical thickness varies considerably both within and across species. The type specimen of the new species Propithecus tattersalli is virtually indistinguishable from P. verreauxi on the basis of its long bone cross-sectional geometry. Femoral robusticity is uncorrelated with size, but humeral robusticity decreases significantly with increasing size. Femoral shape variables (a-p/m-l) are all negatively correlated with body size, indicating that m-l dimensions of the femur increase at a faster rate than do a-p dimensions. The highly loaded plane of movement seems to be more reinforced in the smaller species. Contrary to static biomechanical scaling predictions of positive allometry, all cross-sectional parameters scale relatively close to isometry. It is concluded that either changes in locomotor performance must compensate for the weight-related increase in forces and moments or that the larger-bodied animals operate appreciably closer to the limits of their safety margins.  相似文献   

18.
This study is based upon 48 3-dimensional coordinates taken on 4 fossil hominid and 127 extant hominoid coxal bones. The follis include Sts 14, SK 3155, MLD 7, and MLD 25. The comparative sample consists of 42 Homo sapiens, 27 Pan troglodytes, 29 Gorilla gorilla and 29 Pongo pygmaeus. The coordinates improve the metrical representation of the bone beyond what can be done with linear measurements because the shape complexity of the os coxae is so great. The coordinates are rotated and translated so that all bones are in a standard position. The coordinates are then standardized for each specimen by dividing all coordinates by the pooled standard deviation of X, Y, and Z coordinates. These data are treated to standard statistical analyses including analysis of variance, Penrose size and shape statistics, principal coordinates and components, and canonical variates analysis. The data are then further altered by using some specimen as a standard and rotating each specimen until the total squared distance between its coordinates and those of the standard are minimized. The same statistics are applied to these "best fit" data. The results show a high degree of agreement between the methods. The hominid os coxae are dundamentally different from the other hominoids and the fossil hominids share the basic hominid configuration but with some unique differences.  相似文献   

19.
Abstract: A new, unusually well‐preserved juvenile specimen of Ctenochelys stenoporus from the Niobrara Formation is described. The skull has come apart at its sutures and all bones of the braincase and ear region are preserved three‐dimensionally. This allows a detailed reconstruction of the important brain structures of a basal juvenile cheloniid turtle. It is compared with adult Ctenochelys specimens, and the major ontogenetic changes in the skull and postcranial skeleton are described. Furthermore, the specimen is compared with other fossil and extant cheloniids with well‐known braincases and the differences between basal and advanced cheloniids turtles are specified.  相似文献   

20.
《Comptes Rendus Palevol》2008,7(2-3):145-158
Preservation of intact macromolecules and geochemical signals in fossil bones is mainly controlled by the extent of post-mortem interaction between bones and sediment pore waters. Trace elements such as lanthanum are added to bone post-mortem from pore waters, and where uptake occurs via a simple process of diffusion and adsorption, the elemental distribution can be used to assess the relative extent of bone-pore water interaction and rate of recrystallisation. Distribution profiles can be parameterised effectively using simple exponential equations, and the extent of bone–water interaction compared within and between sites. In this study, the distribution of lanthanum within bone was determined by laser ablation ICP–MS in 60 archaeological and fossil bones from Pleistocene and Cretaceous sites. The rates of recrystallisation and potential for preservation of intact biogeochemical signals vary significantly within and between sites. Elemental profiles within fossil bones hold promise as a screening technique to prospect for intact biomolecules and as a taphonomic tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号