首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2018年   1篇
  2014年   2篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The functional efficacy of colocalized, linked protein domains is dependent on linker flexibility and system compaction. However, the detailed characterization of these properties in aqueous solution presents an enduring challenge. Here, we employ a novel, to our knowledge, combination of complementary techniques, including small-angle neutron scattering, neutron spin-echo spectroscopy, and all-atom molecular dynamics and coarse-grained simulation, to identify and characterize in detail the structure and dynamics of a compact form of mercuric ion reductase (MerA), an enzyme central to bacterial mercury resistance. MerA possesses metallochaperone-like N-terminal domains (NmerA) tethered to its catalytic core domain by linkers. The NmerA domains are found to interact principally through electrostatic interactions with the core, leashed by the linkers so as to subdiffuse on the surface over an area close to the core C-terminal Hg(II)-binding cysteines. How this compact, dynamical arrangement may facilitate delivery of Hg(II) from NmerA to the core domain is discussed.  相似文献   
2.
Polyplexes of short DNA-fragments (300 b.p., 100 nm) with tailor-made amine-based polycations of different architectures (linear and hyperbranched) were investigated in buffer solution as a function of the mixing ratio with DNA. The resulting dispersed polyplexes were characterized using small-angle neutron and X-ray scattering (SANS, SAXS) as well as cryo-TEM with respect to their mesoscopic structure and their colloidal stability. The linear polyimines form rather compact structures that have a high tendency for precipitation. In contrast, the hyperbranched polycation with enzymatic-labile pentaethylenehexamine arms (PEHA) yields polyplexes colloidally stable for months. Here the polycation coating of DNA results in a homogeneous dispersion based on a fractal network with low structural organization at low polycation amount. With increasing polycation, bundles of tens of aligned DNA rods appear that are interconnected in a fractal network with a typical correlation distance on the order of 100 nm, the average length of the DNA used. With higher organization comes a decrease in stability. The 3D network built by these beams can still exhibit some stability as long as the material concentration is large enough, but the structure collapses upon dilution. SAXS shows that the complexation does not affect the local DNA structure. Interestingly, the structural findings on the DNA polyplexes apparently correlate with the transfection efficiency of corresponding siRNA complexes. In general, these finding not only show systematic trends for the colloid stability, but may allow for rational approaches to design effective transfection carriers.  相似文献   
3.
Casein proteins belong to the class of natively disordered proteins. The existence of disordered biologically active proteins questions the assumption that a well-folded structure is required for function. A hypothesis generally put forward is that the unstructured nature of these proteins results from the functional need of a higher flexibility. This interplay between structure and dynamics was investigated in a series of time-of-flight neutron scattering experiments, performed on casein proteins, as well as on three well-folded proteins with distinct secondary structures, namely, myoglobin (alpha), lysozyme (alpha/beta) and concanavalin A (beta). To illustrate the subtraction of the solvent contribution from the scattering spectra, we used the dynamic susceptibility spectra emphasizing the high frequency part of the spectrum, where the solvent dominates. The quality of the procedure is checked by comparing the corrected spectra to those of the dry and hydrated protein with negligible solvent contamination. Results of spectra analysis reveal differences in motional amplitudes of well-folded proteins, where beta-sheet structures appear to be more rigid than a cluster of alpha-helices. The disordered caseins display the largest conformational displacements. Moreover their global diffusion rates deviate from the expected dependence, suggesting further large-scale conformational motions.  相似文献   
4.
The functional efficacy of colocalized, linked protein domains is dependent on linker flexibility and system compaction. However, the detailed characterization of these properties in aqueous solution presents an enduring challenge. Here, we employ a novel, to our knowledge, combination of complementary techniques, including small-angle neutron scattering, neutron spin-echo spectroscopy, and all-atom molecular dynamics and coarse-grained simulation, to identify and characterize in detail the structure and dynamics of a compact form of mercuric ion reductase (MerA), an enzyme central to bacterial mercury resistance. MerA possesses metallochaperone-like N-terminal domains (NmerA) tethered to its catalytic core domain by linkers. The NmerA domains are found to interact principally through electrostatic interactions with the core, leashed by the linkers so as to subdiffuse on the surface over an area close to the core C-terminal Hg(II)-binding cysteines. How this compact, dynamical arrangement may facilitate delivery of Hg(II) from NmerA to the core domain is discussed.  相似文献   
5.
6.
7.
Polarization analysis was used to separate experimentally the coherent and spin-incoherent nuclear static scattering functions, from a representative set of samples of interest for protein studies. This method had so far limited application in the study of amorphous materials, despite the relevance of the information that it provides. It allows, for instance, the experimental determination of the structure factor of materials containing a significant amount of hydrogen atoms, avoiding the contamination of measurements by a non-negligible incoherent background. Knowledge of the relative importance of the coherent and incoherent terms at different Q-values is also a pre-requisite for the interpretation of quasielastic neutron scattering experiments, performed at instruments in which the total dynamic scattering function is measured, such as conventional time-of-flight and backscattering spectrometers. Combining data from different instruments, it was possible to cover a wide Q-range, from the small-angle region (0.006 < Q < 0.04 Å− 1) to the wide-angle region (up to ≈ 2.35 Å− 1). Quantitative information was obtained on the fraction of coherent to spin-incoherent scattering from different protein samples: deuterated and protonated protein powders at different hydration levels and solutions of protonated proteins in D2O at different concentrations. The results obtained are discussed in the context of the validity of the assumptions generally made when interpreting quasielastic neutron scattering experiments performed without polarization analysis.  相似文献   
8.
Pressure is a ubiquitous physical parameter in life and is commonly used in the life sciences to study new protein folding pathways or association-dissociation phenomena. In this paper, an investigation of the influence of pressure on hemoglobin, a multimeric protein, at the picosecond time scale is presented using time-of-flight neutron scattering. The aim is to observe the influence of pressure on the translational diffusion and internal motions of hemoglobin in a concentrated solution and a possible dissociation of the subunits as suggested by Pin et al. (Biochemistry 29:9194, 1990) using fluorescence spectroscopy. A new flat 2 kbar pressure cell made of an aluminum alloy has been used, which allowed the effect of pressure to be studied with minimum background contribution. Within this range of pressure, the effect of this physical parameter on global diffusion can be explained in terms of the change in the water buffer viscosity and an oligomerization of hemoglobin subunits, whereas the internal motions were less affected.  相似文献   
9.
We measured the effect of intrinsic lipid curvature, J0, on structural properties of asymmetric vesicles made of palmitoyl-oleoyl-phosphatidylethanolamine (POPE; J0<0) and palmitoyl-oleoyl-phosphatidylcholine (POPC; J00). Electron microscopy and dynamic light scattering were used to determine vesicle size and morphology, and x-ray and neutron scattering, combined with calorimetric experiments and solution NMR, yielded insights into leaflet-specific lipid packing and melting processes. Below the lipid melting temperature we observed strong interleaflet coupling in asymmetric vesicles with POPE inner bilayer leaflets and outer leaflets enriched in POPC. This lipid arrangement manifested itself by lipids melting cooperatively in both leaflets, and a rearrangement of lipid packing in both monolayers. On the other hand, no coupling was observed in vesicles with POPC inner bilayer leaflets and outer leaflets enriched in POPE. In this case, the leaflets melted independently and did not affect each other’s acyl chain packing. Furthermore, we found no evidence for transbilayer structural coupling above the melting temperature of either sample preparation. Our results are consistent with the energetically preferred location of POPE residing in the inner leaflet, where it also resides in natural membranes, most likely causing the coupling of both leaflets. The loss of this coupling in the fluid bilayers is most likely the result of entropic contributions.  相似文献   
10.
We have studied the influence of pressure on structure and dynamics of a small protein belonging to the enzymatic catalysis: the bovine pancreatic trypsin inhibitor (BPTI). Using a copper-beryllium high-pressure cell, we have performed small angle neutron scattering (SANS) experiment on NEAT spectrometer at HMI (Berlin, Germany). In the SANS configuration, the evolution of the radius of gyration and of the shape of the protein under pressures up to 6,000 bar has been studied. When increasing pressure from atmospheric pressure up to 6,000 bar, the pressure effects on the global structure of BPTI result on a reduction of the radius of gyration from 13.4 A down to 12.0 A. Between 5,000 and 6,000 bar, some transition already detected by FTIR [N. Takeda, K. Nakano, M. Kato, Y. Taniguchi, Biospectroscopy, 4, 1998, pp. 209-216] is observed. The pressure effect is not reversible because the initial value of the radius of gyration is not recovered after pressure release. By extending the range of wave-vectors to high q, we have observed a change of the form factor (shape) of the BPTI under pressure. At atmospheric pressure BPTI exhibits an ellipsoidal form factor that is characteristic of the native state. When the pressure is increased from atmospheric pressure up to 6,000 bar, the protein keeps its ellipsoidal shape. The parameters of the ellipsoid vary and the transition detected between 5,000 and 6,000 bar in the form factor of BPTI is in agreement with the FTIR results. After pressure release, the form factor of BPTI is characteristic of an ellipsoid of revolution with a semi-axis a, slightly elongated with respect to that of the native one, indicating that the pressure-induced structural changes on the protein are not reversible. The global motions and the internal dynamics of BPTI protein have been investigated in the same pressure range by quasi-elastic neutron scattering experiments on IN5 time-of-flight spectrometer at ILL (Grenoble, France). The diffusion coefficients D and the internal relaxation times of BPTI deduced from the analysis of the intermediate scattering functions show a slowing down of protein dynamics when increasing pressure.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号