首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23568篇
  免费   2055篇
  国内免费   8篇
  2023年   174篇
  2022年   99篇
  2021年   346篇
  2020年   325篇
  2019年   344篇
  2018年   600篇
  2017年   599篇
  2016年   776篇
  2015年   1033篇
  2014年   1072篇
  2013年   1497篇
  2012年   1889篇
  2011年   1865篇
  2010年   1218篇
  2009年   956篇
  2008年   1516篇
  2007年   1484篇
  2006年   1402篇
  2005年   1338篇
  2004年   1296篇
  2003年   1203篇
  2002年   1055篇
  2001年   229篇
  2000年   277篇
  1999年   238篇
  1998年   209篇
  1997年   134篇
  1996年   148篇
  1995年   160篇
  1994年   125篇
  1993年   135篇
  1992年   157篇
  1991年   107篇
  1990年   99篇
  1989年   92篇
  1988年   84篇
  1987年   87篇
  1986年   76篇
  1985年   63篇
  1984年   98篇
  1983年   63篇
  1982年   95篇
  1981年   83篇
  1980年   95篇
  1979年   67篇
  1978年   75篇
  1977年   58篇
  1976年   63篇
  1975年   60篇
  1974年   45篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells.  相似文献   
2.
In the present work, we performed docking and molecular dynamics simulations studies on two groups of long-tailored oximes designed as peripheral site binders of acetylcholinesterase (AChE) and potential penetrators on the blood brain barrier. Our studies permitted to determine how the tails anchor in the peripheral site of sarin-inhibited human AChE, and which aminoacids are important to their stabilization. Also the energy values obtained in the docking studies corroborated quite well with the experimental results obtained before for these oximes.  相似文献   
3.
4.
5.
Populations often experience variable conditions, both in time and space. Here we develop a novel theoretical framework to study the evolution of migration under the influence of spatially and temporally variable selection and genetic drift. First, we examine when polymorphism is maintained at a locus under heterogeneous selection, as a function of the pattern of spatial heterogeneity and the migration rate. In a second step, we study how levels of migration evolve under the joint action of kin competition and local adaptation at a polymorphic locus. This analysis reveals the existence of evolutionary bistability, whereby a low or a high migration rate may evolve depending on the initial conditions. Last, we relax several assumptions regarding selection heterogeneity commonly made in previous studies and explore the consequences of more complex spatial and temporal patterns of variability in selection on the evolution of migration. We found that small modifications in the pattern of environmental heterogeneity may have dramatic effects on the evolution of migration. This work highlights the importance of considering more general scenarios of environmental heterogeneity when studying the evolution of life‐history traits in ecologically complex settings.  相似文献   
6.
Despite their importance in nano-environmental health and safety, interactions between engineered nanomaterials and microbial life remain poorly characterized. Here, we used the model organism E. coli to study the penetration requirements, subcellular localization, induction of stress responses, and long-term fate of luminescent Mn-doped ZnS nanocrystals fabricated under “green” processing conditions with a minimized ZnS-binding protein. We find that such protein-coated quantum dots (QDs) are unable to penetrate the envelope of unmodified E. coli but readily translocate to the cytoplasm of cells that have been made competent by chemical treatment. The process is dose-dependent and reminiscent of bacterial transformation. Cells that have internalized up to 0.5 μg/mL of nanocrystals do not experience a significant activation of the unfolded protein or SOS responses but undergo oxidative stress when exposed to high QD doses (2.5 μg/mL). Finally, although they are stable in quiescent cells over temperatures ranging from 4 to 42°C, internalized QDs are rapidly diluted by cell division in a process that does not involve TolC-dependent efflux. Taken together, our results suggest that biomimetic QDs based on low toxicity inorganic cores capped by a protein shell are unlikely to cause significant damage to the microbial ecosystem.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号