首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35734篇
  免费   2802篇
  国内免费   9篇
  2023年   277篇
  2022年   226篇
  2021年   778篇
  2020年   584篇
  2019年   647篇
  2018年   1050篇
  2017年   982篇
  2016年   1262篇
  2015年   1653篇
  2014年   1786篇
  2013年   2458篇
  2012年   3261篇
  2011年   3113篇
  2010年   1746篇
  2009年   1477篇
  2008年   2310篇
  2007年   2308篇
  2006年   2139篇
  2005年   1874篇
  2004年   1805篇
  2003年   1623篇
  2002年   1418篇
  2001年   341篇
  2000年   364篇
  1999年   318篇
  1998年   240篇
  1997年   183篇
  1996年   164篇
  1995年   166篇
  1994年   149篇
  1993年   126篇
  1992年   148篇
  1991年   119篇
  1990年   145篇
  1989年   81篇
  1988年   77篇
  1987年   92篇
  1986年   61篇
  1985年   67篇
  1984年   104篇
  1983年   69篇
  1982年   77篇
  1981年   82篇
  1980年   75篇
  1979年   53篇
  1978年   58篇
  1977年   45篇
  1976年   53篇
  1975年   55篇
  1973年   39篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
1.
2.
3.
Metabolic disorders have been established as major risk factors for ocular complications and poor vision. However, little is known about the inverse possibility that ocular disease may cause metabolic dysfunction. To test this hypothesis, we assessed the metabolic consequences of a robust dietary challenge in several mouse models suffering from retinal mutations. To this end, mice null for melanopsin (Opn4-/-), the photopigment of intrinsically photosensitive retinal ganglion cells (ipRGCs), were subjected to five weeks of a ketogenic diet. These mice lost significantly more weight than wild-type controls or mice lacking rod and cone photoreceptors (Pde6brd1/rd1). Although ipRGCs are critical for proper circadian entrainment, and circadian misalignment has been implicated in metabolic pathology, we observed no differences in entrainment between Opn4-/- and control mice. Additionally, we observed no differences in any tested metabolic parameter between these mouse strains. Further studies are required to establish the mechanism giving rise to this dramatic phenotype observed in melanopsin-null mice. We conclude that the causality between ocular disease and metabolic disorders merits further investigation due to the popularity of diets that rely on the induction of a ketogenic state. Our study is a first step toward understanding retinal pathology as a potential cause of metabolic dysfunction.  相似文献   
4.
5.
The outer membrane protein (omp40) component from the chemolithoautotrophic acidophilic Thiobacillus ferrooxidans is apparently regulated by the external pH and the concentration of phosphorus. Its amino-terminal sequence showed little identity with the Escherichia coli OmpC, OmpF or PhoE porins, but was 38.5% identical to the outer membrane channel-forming protein NosA from Pseudomonas stutzeri, whose expression is also regulated environmentally. In addition, the partial amino acid sequence of T. ferrooxidans omp40 showed between 34 and 38% identity with the amino-terminal end of the small outer membrane proteins Rck and PagC from Salmonella typhimurium and OmpX from Enterobacter cloacae.  相似文献   
6.
Simulation is used to facilitate new learning in a variety of situations. One application of simulation could be to help therapists gain therapeutic skills prior to seeing clients. This particular study was interested in measuring changes in stress response by looking at subjective and objective measures of distress (as measured by SUDS, HR, and HRV) over three sessions of simulated therapy. 16 second year psychology students participated in three sessions, and had their HR and HRV measured by Polar watches. Over the three sessions, there was a decrease in perceived distress, as measured by SUDS ratings. During and between sessions, there was inconclusive change in physiological parameters.  相似文献   
7.
Neurofibromatosis type 1 (NF1) is one of the most common human hereditary disorders, predisposing individuals to the development of benign and malignant tumors in the nervous system, as well as other clinical manifestations. NF1 is caused by heterozygous mutations in the NF1 gene and around 25% of the pathogenic changes affect pre-mRNA splicing. Since the molecular mechanisms affected by these mutations are poorly understood, we have analyzed the splicing mutations identified in exon 9 of NF1, which is particularly prone to such changes, to better define the possible splicing regulatory elements. Using a minigene approach, we studied the effect of five splicing mutations in this exon described in patients. These highlighted three regulatory motifs within the exon. An in vivo splicing analysis of an extensive collection of changes generated in the minigene demonstrated that the CG motif at c.910-911 is critical for the recognition of exon 9. We also found that the GC motif at c.945-946 is involved in exon recognition through SRSF2 and that this motif is part of a Composite Exon Splicing Regulatory Element made up of physically overlapping enhancer and silencer elements. Finally, through an in vivo splicing analysis and in vitro binding assays, we demonstrated that the c.1007G>A mutation creates an Exonic Splicing Silencer element that binds the hnRNPA1 protein. The complexity of the splicing regulatory elements present in exon 9 is most likely responsible for the fact that mutations in this region represent 25% of all exonic changes that affect splicing in the NF1 gene.  相似文献   
8.
As the use of RNA-seq has popularized, there is an increasing consciousness of the importance of experimental design, bias removal, accurate quantification and control of false positives for proper data analysis. We introduce the NOISeq R-package for quality control and analysis of count data. We show how the available diagnostic tools can be used to monitor quality issues, make pre-processing decisions and improve analysis. We demonstrate that the non-parametric NOISeqBIO efficiently controls false discoveries in experiments with biological replication and outperforms state-of-the-art methods. NOISeq is a comprehensive resource that meets current needs for robust data-aware analysis of RNA-seq differential expression.  相似文献   
9.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that has generated scientific interest because of its prevalence in the population. Studies indicate that physical exercise promotes neuroplasticity and improves cognitive function in animal models and in human beings. The aim of the present study was to investigate the effects of strength exercise on the hippocampal protein contents and memory performance in mice subjected to a model of sporadic AD induced by streptozotocin (STZ). Swiss mice received two injections of STZ (3 mg/kg, intracerebroventricular). After 21 days, they began physical training using a ladde. Mice performed this protocol for 4 weeks. After the last exercise training session, mice performed the Morris Water Maze test. The samples of hippocampus were excised and used to determine protein contents of brain-derived neurotrophic factor (BDNF), extracellular signal-regulated kinase-Ca2+ (ERK), calmodulin-dependent protein kinase (CAMKII) and cAMP-response element-binding protein (CREB) signalling pathway. Strength exercise was effective against the decrease in the time spent and distance travelled in the target quadrant by STZ-injected mice. Strength exercise was also effective against the reduction of mature BDNF, tropomyosin receptor kinase B and neuronal nuclear antigen (NeuN) hippocampal protein levels in STZ mice. The decrease in the hippocampal ratio of pERK/ERK, pCAMKII/CAMKII and pCREB/CREB induced by STZ was reversed by strength exercise. Strength exercise decreased Bax/Bcl2 ratio in the hippocampus of STZ-injected mice. The present study demonstrates that strength exercise modulated the hippocampal BDNF/ERK-CAMKII/CREB signalling pathway and suppressed STZ-induced spatial memory impairment in mice.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号