首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   8篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2016年   2篇
  2015年   6篇
  2014年   9篇
  2013年   6篇
  2012年   7篇
  2011年   6篇
  2010年   9篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
2.

Introduction  

Total cholesterol (TC) and blood pressure (BP) are likely to take a dynamic course over time in patients with systemic lupus erythematosus (SLE). This would have important implications in terms of using single-point-in-time measurements of these variables to assess coronary artery disease (CAD) risk. The objective of this study was to describe and quantify variability over time of TC and BP among patients with SLE and to determine their correlates.  相似文献   
3.
Liver injury is a deleterious adverse effect associated with methimazole administration, and reactive intermediates are suspected to be involved in this complication. Glyoxal is an expected reactive intermediate produced during methimazole metabolism. Current investigation was undertaken to evaluate the role of carnosine, metformin, and N‐acetyl cysteine as putative glyoxal (carbonyl) traps, against methimazole‐induced hepatotoxicity. Methimazole (100 mg/kg, intraperitoneally) was administered to intact and/or glutathione (GSH)?depleted mice and the role of glyoxal trapping agents was investigated. Methimazole caused liver injury as revealed by an increase in serum alanine aminotransferase and aspartate aminotransferase. Moreover, lipid peroxidation and protein carbonylation occurred significantly in methimazole?treated animals’ liver. Hepatic GSH reservoirs were decreased, and inflammatory cells infiltration was observed in liver histopathology. Methimazole?induced hepatotoxicity was severe in GSH‐depleted mice and accompanied with interstitial hemorrhage and necrosis of the liver. Glyoxal trapping agents effectively diminished methimazole‐induced liver injury both in intact and/or GSH?depleted animals.  相似文献   
4.
In the present research, merwinite (M) scaffolds with and without nano‐titanium dioxide (titania) were synthesized by water‐based freeze casting method. Two different amounts (7.5 and 10 wt%) of n‐TiO2 were added to M scaffolds. They were sintered at temperature of 1573.15°K and at cooling rate of 4°K/min. The changes in physical and mechanical properties were investigated. The results showed that although M and M containing 7.5 wt% n‐TiO2 (MT7.5) scaffolds had approximately the same microstructures in terms of pore size and wall thickness, these factors were different for sample MT10. In overall, the porosity, volume and linear shrinkage were decreased by adding different weight ratios of n‐TiO2 into the M structure. According to the obtained mechanical results, the optimum mechanical performance was related to the sample MT7.5 (E = 51 MPa and σ = 2 MPa) with respect to the other samples, i.e.: M (E = 47 MPa and σ = 1.8 MPa) and MT10 (E = 32 MPa and σ = 1.4 MPa). The acellular in vitro bioactivity experiment confirmed apatite formation on the surfaces of all samples for various periods of soaking time. Based on cell study, the sample which possessed favorable mechanical behavior (MT7.5) supported attachment and proliferation of osteoblastic cells. These results revealed that the MT7.5 scaffold with improved mechanical and biological properties could have a potential to be used in bone substitute. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:550–556, 2015  相似文献   
5.

Background  

A hot new topic in medical treatment is the use of mesenchymal stem cells (MSC) in therapy. The low frequency of this subpopulation of stem cells in bone marrow (BM) necessitates their in vitro expansion prior to clinical use. We evaluated the effect of long term culture on the senescence of these cells.  相似文献   
6.
Hepatitis C is a liver disease caused by the hepatitis C virus (HCV). The treatment of HCV infection has become more complicated due to various genotypes and subtypes of HCV. The treatment of HCV has made significant advances with direct-acting antivirals. However, for the choice of medicine or the combination of drugs for hepatitis C, it is imperative to detect and discriminate the crucial HCV genotypes. The main objective of this study was to determine the pattern of circulating HCV genotypes in southern Iran, from 2016 until 2019. The other aim of the study was to determine possible associations of patients’ risk factors with HCV genotypes. A total of 803 serum samples were collected in 4 years (2016–2019) from patients with HCV antibody positive results. A total of 728 serum samples were HCV-RNA positive. The prevalence of HCV genotypes was detected using the genotype-specific RT-PCR test for serum samples obtained from 615 patients. The HCV genotype 1 (G1) was the most prevalent (48.8%) genotype in the area, with G1a, G1b, and mixed G1a/b representing 38.4%, 10.1%, and 0.3%, respectively. Genotype 3a was the next most prevalent (47.2%). Mixed genotypes 1a/3a were detected in 22 (3.6%) and finally G4 was found in 3 (0.5%) patients. The other HCV genotypes were not detected in any patient. Genotype 1 (1a and 1b alone, 1a/1b and 1a/3a coinfections) is the most prevalent HCV genotype in southern Iran. HCV G1 shows a significantly higher rate in people under 40 years old.  相似文献   
7.
Three phosphate solubilizing bacterial isolates identified as Pantoea agglomerans strain P5, Microbacterium laevaniformans strain P7 and Pseudomonas putida strain P13 were assessed for mutual relationships among them, competitiveness with soil microorganisms and associations with plant root using luxAB reporter genes for follow-up studies. Synergism between either P. agglomerans or M. laevaniformans, as acid-producing bacteria, and P. putida, as a strong phosphatase producer, was consistently observed both in liquid culture medium and in root rhizosphere. All laboratory, greenhouse and field experiments proved that these three isolates compete well with naturally occurring soil microorganisms. Consistently, the combinations of either P. agglomerans or M. laevaniformans strains with Pseudomonas putida led to higher biomass and potato tuber in greenhouse and in field trials. It is conceivable that combinations of an acid- and a phosphatase-producing bacterium would allow simultaneous utilization of both inorganic and organic phosphorus compounds preserving the soil structure.  相似文献   
8.
In this study, the diversity of Plasmodium vivax populations circulating in Pakistan and Iran has been investigated by using circumsporozoite protein (csp) and merozoite surface proteins 1 and 3α (msp-1 and msp-3α) genes as genetic markers. Infected P. vivax blood samples were collected from Pakistan (n = 187) and Iran (n = 150) during April to October 2008, and were analyzed using nested-PCR/RFLP and sequencing methods. Genotyping pvmsp-1 (variable block 5) revealed the presence of type 1, type 2 and recombinant type 3 allelic variants, with type 1 predominant, in both study areas. The sequence analysis of 33 P. vivax isolates from Pakistan and 30 from Iran identified 16 distinct alleles each, with one allele (R-8) from Iran which was not reported previously. Genotyping pvcsp gene also showed that VK210 type is predominant in both countries. Moreover, based on the size of amplified fragment of pvmsp-3α, three major types: type A (1800 bp), type B (1500 bp) and type C (1200 bp), were distinguished among the examined isolates that type A was predominant among Pakistani (72.7%) and Iranian (77.3%) parasites. PCR/RFLP products of pvmsp-3α with HhaI and AluI have detected 40 and 39 distinct variants among Pakistani and Iranian examined isolates, respectively. Based on these three studied genes, the rate of combined multiple genotypes were 30% and 24.6% for Pakistani and Iranian P. vivax isolates, respectively. These results indicate an extensive diversity in the P. vivax populations in both studies.  相似文献   
9.
10.
K3/MIR1 and K5/MIR2 of Kaposi''s sarcoma-associated herpesvirus (KSHV) are viral members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family and contribute to viral immune evasion by directing the conjugation of ubiquitin to immunostimulatory transmembrane proteins. In a quantitative proteomic screen for novel host cell proteins downregulated by viral immunomodulators, we previously observed that K5, as well as the human immunodeficiency virus type 1 (HIV-1) immunomodulator VPU, reduced steady-state levels of bone marrow stromal cell antigen 2 (BST2; also called CD317 or tetherin), suggesting that BST2 might be a novel substrate of K5 and VPU. Recent work revealed that in the absence of VPU, HIV-1 virions are tethered to the plasma membrane in BST2-expressing HeLa cells. By targeting BST2, K5 might thus similarly overcome an innate antiviral host defense mechanism. Here we establish that despite its type II transmembrane topology and carboxy-terminal glycosylphosphatidylinositol (GPI) anchor, BST2 represents a bona fide target of K5 that is downregulated during primary infection by and reactivation of KSHV. Upon exit of the protein from the endoplasmic reticulum, lysines in the short amino-terminal domain of BST2 are ubiquitinated by K5, resulting in rapid degradation of BST2. Ubiquitination of BST2 is required for degradation, since BST2 lacking cytosolic lysines was K5 resistant and ubiquitin depletion by proteasome inhibitors restored BST2 surface expression. Thus, BST2 represents the first type II transmembrane protein targeted by K5 and the first example of a protein that is both ubiquitinated and GPI linked. We further demonstrate that KSHV release is decreased in the absence of K5 in a BST2-dependent manner, suggesting that K5 contributes to the evasion of intracellular antiviral defense programs.Bone marrow stromal cell antigen 2 (BST2) was recently identified as a host cell restriction factor that prevents the release of retroviral and filoviral particles from infected host cells (23). Human immunodeficiency virus type 1 (HIV-1) counteracts this antiviral function of BST2 by expressing the viral auxiliary protein VPU (41, 53). In the absence of VPU, virus particles are prevented from budding off the cellular membrane in cells that express BST2, resulting in virions being tethered to the plasma membrane. BST2 was therefore renamed tetherin (41), although questions still remain as to whether BST2 acts as the actual tether and whether BST2-dependent tethering occurs in all BST2-expressing cell types (36). Independently, BST2 was shown to be induced by type I and type II interferons (IFNs) (7), suggesting that BST2 is part of the innate antiviral response triggered in infected cells.Using a quantitative membrane proteomic approach, we observed that BST2 is underrepresented in plasma membranes from cells expressing not only VPU (14) but also the K5 protein of Kaposi''s sarcoma-associated herpesvirus (KSHV) (4). K5 is a viral homologue of a family of cellular transmembrane ubiquitin ligases, termed membrane-associated RING-CH (MARCH) proteins (3), that mediate the ubiquitination of the cytoplasmic portion of transmembrane proteins (reviewed in reference 40). Each member of this family targets a subset of cellular membrane proteins with both unique and shared specificities (4, 56). One of the functions of cellular MARCH proteins is to modulate antigen presentation by mediating the ubiquitin-dependent turnover of major histocompatibility complex (MHC) class II molecules in dendritic cells, B cells, and monocytes/macrophages (43, 52). In contrast, viral homologues of MARCH proteins encoded by KSHV, murine herpesvirus 68, and the leporipoxvirus myxomavirus all share the ability to mediate the destruction of MHC-I (reviewed in reference 16) but not MHC-II molecules. Thus, one of the functions of the viral proteins is to promote viral escape from immune clearance by CD8+ T lymphocytes (50). Furthermore, each viral MARCH homologue specifically eliminates additional host cell proteins, so each plays multiple roles in viral pathogenesis. KSHV carries two viral MARCH proteins, K3 and K5, also known as MIR1 and MIR2, which both support viral escape from T-cell, NK-cell, and NKT-cell recognition by eliminating the corresponding ligands from the surfaces of infected cells (reviewed in reference 10). In endothelial cells (ECs), K5 additionally downregulates EC-specific adhesion molecules that play an essential role in the formation of adhesive platforms and adherens junctions (31, 32). Since Kaposi''s sarcoma is a tumor of EC origin, K5 might thus also contribute to tumorigenesis by disrupting normal EC barrier function and by modulating the interaction of ECs with inflammatory leukocytes.The downregulation of BST2 by K5 further suggests that K5 also counteracts innate antiviral responses, which might benefit KSHV. However, most transmembrane proteins targeted by viral or cellular MARCH proteins are type I transmembrane proteins that belong to the immunoglobulin superfamily. In contrast, BST2 is a type II transmembrane protein that is also glycosylphosphatidylinositol (GPI) anchored (25). Thus, BST2 has a short cytoplasmic amino terminus followed by an outside-in transmembrane domain, a large glycosylated extracellular portion, and a GPI anchor. The additional propensity of BST2 to form homodimers (44) was speculated to be crucial for the tethering function of BST2 in that self-association of BST2 molecules in the viral envelope with plasma membrane BST2 could prevent viral exit (19). The unusual topology of BST2 and its multimerization raised the question of whether BST2 is a bona fide target of K5 or whether its downregulation is a downstream effect of K5 eliminating other transmembrane proteins. Additionally, it is not clear whether BST2 would be downregulated in the context of a normal viral infection and, particularly, whether virally expressed K5 would be able to overcome the high expression levels of BST2 observed upon IFN induction. We now demonstrate that KSHV efficiently downregulates IFN-induced BST2 both during primary infection and upon reactivation from latency in ECs. IFN-induced BST2 is ubiquitinated by K5 upon exiting the endoplasmic reticulum (ER) and is rapidly degraded by a pathway that is sensitive to proteasome inhibitors but resistant to inhibitors of lysosomal acidification. These data suggest that despite its unusual topology, BST2 is directly targeted by K5. We further demonstrate that BST2 reduces KSHV release upon inhibition of K5 expression by small interfering RNA (siRNA), suggesting that BST2 is part of the IFN-induced innate immune response to KSHV. Thus, in addition to contributing to viral evasion of cellular immune responses and remodeling EC function, K5 also counteracts the innate immune defense of the host cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号