首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   4篇
  2023年   2篇
  2022年   4篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   7篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   4篇
  2010年   8篇
  2009年   4篇
  2008年   4篇
  2007年   6篇
  2006年   3篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
排序方式: 共有65条查询结果,搜索用时 31 毫秒
1.
Poor endometrial perfusion during implantation window is reported to be one of the possible causes of idiopathic recurrent spontaneous miscarriage (IRSM). We have tested the hypothesis that certain angiogenic and vasoactive factors are associated with vascular dysfunction during implantation window in IRSM and, therefore, could play a contributory role in making the endometrium unreceptive in these women. This is a prospective case-controlled study carried out on 66 women with IRSM and age and BMI matched 50 fertile women serving as controls. Endometrial expression of pro-inflammatory (IL-1β, TNF-α, IFN-γ, TGF-β1), anti-inflammatory (IL-4, -10), angiogenesis-associated cytokines (IL-2, -6, -8), angiogenic and vasoactive factors including prostaglandin E2 (PGE2), vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), nitric oxide (NO) and adrenomedullin (ADM) were measured during implantation window by ELISA. Subendometrial blood flow (SEBF) was assessed by color Doppler ultrasonography. Multivariate analysis was used to identify the significant factor(s) responsible for vascular dysfunction in IRSM women during window of implantation and further correlated with vascular dysfunction. Endometrial expression of pro-inflammatory cytokines and PGE2 were up-regulated and anti-inflammatory and angiogenesis-associated cytokines down-regulated in IRSM women as compared with controls. Further, the angiogenic and vasoactive factors including VEGF, eNOS, NO and ADM were found to be down-regulated and SEBF grossly affected in these women. Multivariate analysis identified IL-10, followed by VEGF and eNOS as the major factors contributing towards vascular dysfunction in IRSM women. Moreover, these factors strongly correlated with blood flow impairment. This study provides an understanding that IL-10, VEGF and eNOS are the principal key components having a contributory role in endometrial vascular dysfunction in women with IRSM. Down-regulation of these factors is also associated with impaired endometrial perfusion which possibly makes the endometrium unreceptive that may eventually cause early pregnancy loss.  相似文献   
2.
3.

Background

Analyzing the amino acid sequence of an intrinsically disordered protein (IDP) in an evolutionary context can yield novel insights on the functional role of disordered regions and sequence element(s). However, in the case of many IDPs, the lack of evolutionary conservation of the primary sequence can hamper the study of functionality, because the conservation of their disorder profile and ensuing function(s) may not appear in a traditional analysis of the evolutionary history of the protein.

Results

Here we present DisCons (Disorder Conservation), a novel pipelined tool that combines the quantification of sequence- and disorder conservation to classify disordered residue positions. According to this scheme, the most interesting categories (for functional purposes) are constrained disordered residues and flexible disordered residues. The former residues show conservation of both the sequence and the property of disorder and are associated mainly with specific binding functionalities (e.g., short, linear motifs, SLiMs), whereas the latter class correspond to segments where disorder as a feature is important for function as opposed to the identity of the underlying sequence (e.g., entropic chains and linkers). DisCons therefore helps with elucidating the function(s) arising from the disordered state by analyzing individual proteins as well as large-scale proteomics datasets.

Conclusions

DisCons is an openly accessible sequence analysis tool that identifies and highlights structurally disordered segments of proteins where the conformational flexibility is conserved across homologs, and therefore potentially functional. The tool is freely available both as a web application and as stand-alone source code hosted at http://pedb.vib.be/discons.  相似文献   
4.
5.
Integration of living cells with novel microdevices requires the development of innovative technologies for manipulating cells. Chemical surface patterning has been proven as an effective method to control the attachment and growth of diverse cell populations. Patterning polyelectrolyte multilayers through the combination of layer‐by‐layer self‐assembly technique and photolithography offer a simple, versatile, and silicon compatible approach that overcomes chemical surface patterning limitations, such as short‐term stability and low‐protein adsorption resistance. In this study, direct photolithographic patterning of two types of multilayers, PAA (poly acrylic acid)/PAAm (poly acryl amide) and PAA/PAH (poly allyl amine hydrochloride), were developed to pattern mammalian neuronal, skeletal, and cardiac muscle cells. For all studied cell types, PAA/PAAm multilayers behaved as a cytophobic surface, completely preventing cell attachment. In contrast, PAA/PAH multilayers have shown a cell‐selective behavior, promoting the attachment and growth of neuronal cells (embryonic rat hippocampal and NG108‐15 cells) to a greater extent, while providing little attachment for neonatal rat cardiac and skeletal muscle cells (C2C12 cell line). PAA/PAAm multilayer cellular patterns have also shown a remarkable protein adsorption resistance. Protein adsorption protocols commonly used for surface treatment in cell culture did not compromise the cell attachment inhibiting feature of the PAA/PAAm multilayer patterns. The combination of polyelectrolyte multilayer patterns with different adsorbed proteins could expand the applicability of this technology to cell types that require specific proteins either on the surface or in the medium for attachment or differentiation, and could not be patterned using the traditional methods. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
6.

Background

Soluble oligomers of amyloid beta (Aβ) are considered to be one of the major contributing factors to the development of Alzheimer''s disease. Most therapeutic development studies have focused on toxicity directly at the synapse.

Methodology/Principal Findings

Patch clamp studies detailed here have demonstrated that soluble Aβ can also cause functional toxicity, namely it inhibits spontaneous firing of hippocampal neurons without significant cell death at low concentrations. This toxicity will eventually lead to the loss of the synapse as well, but may precede this loss by a considerable amount of time. In a key technological advance we have reproduced these results utilizing a fast and simple method based on extracellular electrophysiological recording of the temporal electrical activity of cultured hippocampal neurons using multielectrode arrays (MEAs) at low concentrations of Aβ (1–42). We have also shown that this functional deficit can be reversed through use of curcumin, an inhibitor of Aβ oligomerization, using both analysis methods.

Conclusions/Significance

The MEA recording method utilized here is non-invasive, thus long term chronic measurements are possible and it does not require precise positioning of electrodes, thus it is ideal for functional screens. Even more significantly, we believe we have now identified a new target for drug development for AD based on functional toxicity of hippocampal neurons that could treat neurodegenerative diseases prior to the development of mild cognitive impairment.  相似文献   
7.
We are attempting to recreate a stretch reflex circuit on a patterned Bio-MEMS (bio-microelectromechanical systems) chip with deflecting micro-cantilevers. The first steps to recreate this system is to be able to grow individual components of the circuit (sensory neuron, motoneuron, skeletal muscle, and muscle spindle) on a patternable, synthetic substrate coating the MEMS device. Sensory neurons represent the afferent portion of the stretch reflex arc and also play a significant role in transmitting the signal from the muscle spindle to the spinal cord motoneurons. We have utilized a synthetic silane substrate N-1[3-(trimethoxysilyl) propyl) diethylenetriamine (DETA) on which to grow and pattern the cells. DETA forms a self-assembled monolayer on a variety of silicon substrates, including glass, and can be patterned using photolithography. In this paper, we have evaluated the growth of sensory neurons on this synthetic silane substrate. We have investigated the immunocytochemical and electrophysiological properties of the sensory neurons on DETA and compared the resultant properties with a biological control substrate (ornithine/laminin). Immunocytochemical studies revealed the survival and growth of all three subtypes of sensory neurons: trkA, trkB, and trkC on both surfaces. Furthermore, whole-cell patch clamp recordings were used to study the electrophysiological properties of the sensory neurons on the two surfaces. There were no significant differences in the electrical properties of the neurons grown on either surface. This is the first study analyzing the immunocytochemical and electrophysiological properties of sensory neurons grown long-term in a completely defined environment and on a nonbiological substrate.  相似文献   
8.
MOTIVATION: The increasing amount of data on protein-protein interaction needs to be rationalized for deriving guidelines for the alteration or design of an interface between two proteins. RESULTS: We present a detaild structural analysis and comparison of homo- versus heterodimeric protein-protein interfaces. Regular secondary structures (helices and strands) are the main components of the former, whereas non-regular structures (turns, loops, etc.) frequently mediate interactions in the latter. Interface helices get longer with increasing interface area, but only in heterocomplexes. On average, the homodimers have longer helical segments and prominent helix-helix pairs. There is a surprising distinction in the relative orientation of interface helices, with a tendency for aligned packing in homodimers and a clear preference for packing at 90 degrees in heterodimers. Arg and the aromatic residues have a higher preference to occur in all secondary structural elements (SSEs) in the interface. Based on the dominant SSE, the interfaces have been grouped into four classes: alpha, beta, alphabeta and non-regular. Identity between protein and interface classes is the maximum for alpha proteins, but rather mediocre for the other protein classes. The interface classes of the two chains forming a heterodimer are often dissimilar. Eleven binding motifs can capture the prominent architectural features of most of the interfaces.  相似文献   
9.
In an attempt to integrate biological components with silicon-based devices and systems, artificial silane surfaces have been successfully used to grow motoneurons in a defined environment. In this study we characterized the morphology and electrophysiology of purified rat embryonic (E14) motoneurons grown on a self-assembled monolayer (SAM) of N-1[3-(trimethoxysilyl)propyl]diethylenetriamine (DETA) versus that on ornithine/laminin surfaces in serum-free media. On DETA motoneurons were flat and grew more processes, whereas on ornithine/laminin they tended to aggregate. The membrane time constant, a characteristic associated with electrotonic compactness, was significantly longer for motoneurons grown on DETA. Other electrophysiological parameters were similar for the motoneurons on the different surfaces. This is the first study where purified ventral horn motoneurons were cultured in a completely defined (nonbiological surface, serum-free) environment.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号