首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 78 毫秒
1
1.
Raza  Shahbaz  Mohsin  Mashkoor  Madni  Waqas Ahmed  Sarwar  Fatima  Saqib  Muhammad  Aslam  Bilal 《EcoHealth》2017,14(1):182-186
EcoHealth - We investigated wild migratory birds faecal swabs for extended-spectrum β-lactamases-producing Klebsiella pneumoniae (ESBL-K. pneumoniae) from wetland habitats in Pakistan. ESBL-K....  相似文献   
2.
Proniosomes (PN) are the dry water-soluble carrier systems that may enhance the oral bioavailability, stability, and topical permeability of therapeutic agents. The low solubility and low oral bioavailability due to extensive first pass metabolism make Pentazocine as an ideal candidate for oral and topical sustained release delivery. The present study was aimed to formulate the PNs by quick slurry method that are converted to niosomes (liquid dispersion) by hydration, and subsequently formulated to semisolid niosomal gel. The PNs were found in spherical shape in the SEM and stable in the physicochemical and thermal analysis (FTIR, TGA, and XRD). The quick slurry method produced high recovery (>?80% yield) and better flow properties (θ?=?28.1–37.4°). After hydration, the niosomes exhibited desirable entrapment efficiency (44.45–76.23%), size (4.98–21.3 μm), and zeta potential (??9.81 to ??21.53 mV). The in vitro drug release (T100%) was extended to more than three half-lives (2–4 h) and showed good fit to Fickian diffusion indicated by Korsmeyer-Peppas model (n?=?0.136–0.365 and R2?=?0.9747–0.9954). The permeation of niosomal gel was significantly enhanced across rabbit skin compared to the pure drug-derived gel. Therefore, the PNs are found promising candidates for oral as dissolution enhancement and sustained release for oral and topical delivery of pentazocine for the management of cancer pain.  相似文献   
3.
In this study, the feasibility of ultrasonic processing (UP) technique as green preparation method for production of poorly soluble model drug substance, diacerein, loaded niosomes was demonstrated. Also, the effects of different surfactant systems on niosomes’ characteristics were analyzed. Niosomes were prepared using both the green UP technique and traditional thin-film hydration (TFH) technique, which requires the use of environmentally hazardous organic solvents. The studied surfactant systems were Span 20, Pluronic L64, and their mixture (Span 20 and Pluronic L64). Both the production techniques produced well-defined spherical vesicles, but the UP technique produced smaller and more monodisperse niosomes than TFH. The entrapment efficiencies with the UP method were lower than with TFH, but still at a feasible level. All the niosomal formulations released diacerein faster than pure drug, and the drug release rates from the niosomes produced by the UP method were higher than those from the TFH-produced niosomes. With UP technique, the optimum process conditions for small niosomal products with low PDI values and high entrapment efficiencies were obtained when 70% amplitude and 45-min sonication time were used. The overall results demonstrated the potency of UP technique as an alternative fast, cost-effective, and green preparation approach for production of niosomes, which can be utilized as drug carrier systems for poorly soluble drug materials.  相似文献   
4.
For centuries microbial biotransformation has proved to be an imperative tool in alleviating the production of various chemicals used in food, pharmaceutical, agrochemical and other industries. In the field of pharmaceutical research and development, biotransformation studies have been extensively applied to investigate the metabolism of compounds (leads, lead candidates, etc.) using animal models. The microbial biotransformation phenomenon is then commonly employed in comparing metabolic pathways of drugs and scaling up the metabolites of interest discovered in these animal models for further pharmacological and toxicological evaluation. Microorganisms can conveniently afford drugs difficult obtained via synthesis. The plethora of reported microbial biotransformations along with its added benefits has already invoked further research in bioconversion of novel and structurally complex drugs. This review alternatively discusses the prospect of microbial biotransformation studies as a significant element ameliorating drug discovery and design in terms of cost-effectiveness, environment protection and greater structural diversity as compared to animal models used to study metabolism. To explicate the microbial biotransformation paradigm in drug designing 3 main areas in this aspect have been analyzed: 1—lead expansion: obtaining pharmacologically improved metabolites from bioactive molecules; 2—biosynthesis of precursors/intermediates involved in the production of bioactive molecules; 3—resolution of racemic mixture to obtain enantiomers possessing different pharmacological profiles.  相似文献   
5.
The non‐specific lipid transfer proteins (nsLTPs) are multifunctional seed proteins engaged in several different physiological processes. The nsLTPs are stabilized by four disulfide bonds and exhibit a characteristic hydrophobic cavity, which is the primary lipid binding site. While these proteins are known to transfer lipids between membranes, the mechanism of lipid transfer has remained elusive. Four crystal structures of nsLTP from Solanum melongena, one in the apo‐state and three myristic acid bound states were determined. Among the three lipid bound states, two lipid molecules were bound on the nsLTP surface at different positions and one was inside the cavity. The lipid‐dependent conformational changes leading to opening of the cavity were revealed based on structural and spectroscopic data. The surface‐bound lipid represented a transient intermediate state and the lipid ultimately moved inside the cavity through the cavity gate as revealed by molecular dynamics simulations. Two critical residues in the loop regions played possible ‘gating’ role in the opening and closing of the cavity. Antifungal activity and membrane permeabilization effect of nsLTP against Fusarium oxysporum suggested that it could possibly involve in bleaching out the lipids. Collectively, these studies support a model of lipid transfer mechanism by nsLTP via intermediate states.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号