首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   3篇
  2019年   1篇
  2018年   1篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2003年   1篇
  1976年   1篇
排序方式: 共有30条查询结果,搜索用时 19 毫秒
1.
2.
3.
4.
Activation of the epidermal growth factor receptor (EGFR) contributes to the pathogenesis of non-small-cell lung carcinomas (NSCLC) and gefitinib, a selective reversible EGFR inhibitor, is effective in treating patients with NSCLC. However, clinical resistance to gefitinib is a frequent occurrence highlighting the need for improved therapeutic strategies. Melanoma differentiation associated gene-7 (mda-7)/Interleukin-24 (IL-24) (mda-7/IL-24) displays cancer-selective apoptosis induction when delivered via a replication-incompetent adenovirus (Ad.mda-7). In this study, the effect of Ad.mda-7 infection, either alone or in combination with gefitinib, was analyzed in a panel of NSCLC cell lines carrying wild-type EGFR (H-460 and H-2030) or mutant EGFR (H-1650 and H-1975). While H-2030 and H-1650 cells were sensitive, H-460 and H-1975 cells were resistance to growth inhibition by Ad.mda-7, which was reversed by the combination of Ad.mda-7 and gefitinib. This combination increased MDA-7/IL-24 and downstream effector double-stranded RNA-activated protein kinase (PKR) protein expression, promoting apoptosis induction of NSCLC cells. Inhibition of PKR significantly inhibited apoptosis induction by Ad.mda-7 when administered alone but not when used in combination with gefitinib. The combination treatment also augmented inhibition of EGFR signaling. Our findings indicate that a combinatorial treatment with Ad.mda-7 and gefitinib may provide benefit in the treatment of NSCLC, especially in patients displaying resistance to clinically used EGFR inhibitors.  相似文献   
5.

Background  

Robustness is a recognized feature of biological systems that evolved as a defence to environmental variability. Complex diseases such as diabetes, cancer, bacterial and viral infections, exploit the same mechanisms that allow for robust behaviour in healthy conditions to ensure their own continuance. Single drug therapies, while generally potent regulators of their specific protein/gene targets, often fail to counter the robustness of the disease in question. Multi-drug therapies offer a powerful means to restore disrupted biological networks, by targeting the subsystem of interest while preventing the diseased network from reconciling through available, redundant mechanisms. Modelling techniques are needed to manage the high number of combinatorial possibilities arising in multi-drug therapeutic design, and identify synergistic targets that are robust to system uncertainty.  相似文献   
6.
To fully comprehend cellular senescence, identification of relevant genes involved in this process is mandatory. Human polynucleotide phosphorylase (hPNPase(OLD-35)), an evolutionarily conserved 3', 5' exoribonuclease mediating mRNA degradation, was first identified as a predominantly mitochondrial protein overexpressed during terminal differentiation and senescence. Overexpression of hPNPase(OLD-35) in human melanoma cells and melanocytes induces distinctive changes associated with senescence, potentially mediated by direct degradation of c-myc mRNA by this enzyme. hPNPase(OLD-35) contains two RNase PH (RPH) domains, one PNPase domain, and two RNA binding domains. Using deletion mutation analysis in combination with biochemical and molecular analyses we now demonstrate that the presence of either one of the two RPH domains conferred similar functional activity as the full-length protein, whereas a deletion mutant containing only the RNA binding domains was devoid of activity. Moreover, either one of the two RPH domains induced the morphological, biochemical, and gene expression changes associated with senescence, including degradation of c-myc mRNA. Subcellular distribution confirmed hPNPase(OLD-35) to be localized both in mitochondria and the cytoplasm. The present study elucidates how a predominantly mitochondrial protein, via its localization in both mitochondria and cytoplasm, is able to target a specific cytoplasmic mRNA, c-myc, for degradation and through this process induce cellular senescence.  相似文献   
7.
Besides having a metabolic role, oxygen is recognized as an important signaling stimulus for stem cells. In hematopoiesis, hypoxia seems to favor stem cell self‐renewal. In fact, long‐term repopulating hematopoietic stem cells reside in bone marrow at concentrations as low as 1% oxygen. However, O2 concentration is difficult to control in vitro. Thermodynamically, we found significant differences between O2 solubility in different media, and in presence of serum. Furthermore, we verified that medium equilibration with a hypoxic atmosphere requires several hours. Thus, in a static culture, the effective O2 concentration in the cell immediate microenvironment is difficult to control and subject to concentration gradients. Stirred systems improve homogeneity within the culture volume. In this work, we developed a stirred bioreactor to investigate hypoxia effect on the expression of stem cell markers in CD34+ cells from umbilical cord blood. The stirring system was designed on top of a standard six‐well plate to favor continuity with conventional static conditions and transfer of culture protocols. The bioreactor volume (10 mL/well) is suitable for cell expansion and multiparametric flow cytometry analyses. First, it was tested at 21% O2 for biocompatibility and other possible effects on the cells compared to static conditions. Then, it was used to study c‐kit expression of CD34+ cells at 5% O2, using 21%‐O2 cultures as a control. In hypoxia we found that CD34+ cells maintained a higher expression of c‐kit. Further investigation is needed to explore the dynamics of interaction between oxygen‐ and c‐kit‐dependent pathways at the molecular level. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   
8.
9.
In this study, a numerical investigation is performed to evaluate the effects of high-pressure sinusoidal and blast wave's propagation around and inside of a human external ear. A series of computed tomography images are used to reconstruct a realistic three-dimensional (3D) model of a human ear canal and the auricle. The airflow field is then computed by solving the governing differential equations in the time domain using a computational fluid dynamics software. An unsteady algorithm is used to obtain the high-pressure wave propagation throughout the ear canal which is validated against the available analytical and numerical data in literature. The effects of frequency, wave shape, and the auricle on pressure distribution are then evaluated and discussed. The results clearly indicate that the frequency plays a key role on pressure distribution within the ear canal. At 4 kHz frequency, the pressure magnitude is much more amplified within the ear canal than the frequencies of 2 and 6 kHz, for the incident wave angle of 90° investigated in this study, attributable to the ‘4-kHz notch’ in patients with noise-induced hearing loss. According to the results, the pressure distribution patterns at the ear canal are very similar for both sinusoidal pressure waveform with the frequency of 2 kHz and blast wave. The ratio of the peak pressure value at the eardrum to that at the canal entrance increases from about 8% to 30% as the peak pressure value of the blast wave increases from 5 to 100 kPa for the incident wave angle of 90° investigated in this study. Furthermore, incorporation of the auricle to the ear canal model is associated with centerline pressure magnitudes of about 50% and 7% more than those of the ear canal model without the auricle throughout the ear canal for sinusoidal and blast waves, respectively, without any significant effect on pressure distribution pattern along the ear canal for the incident wave angle of 90° investigated in this study.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号