首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2004年   1篇
  2001年   1篇
  1957年   1篇
排序方式: 共有9条查询结果,搜索用时 640 毫秒
1
1.
We investigated seasonal variation in dark respiration and photosynthesis by measuring gas exchange characteristics on Pinus radiata and Populus deltoides under field conditions each month for 1 year. The field site in the South Island of New Zealand is characterized by large day-to-day and seasonal changes in air temperature. The rate of foliar respiration at a base temperature of 10 °C ( R 10) in both pine and poplar was found to be greater during autumn and winter and displayed a strong downward adjustment in warmer months. The sensitivity of instantaneous leaf respiration to a 10 °C increase in temperature ( Q 10) was also greater during the winter period. The net effect of this strong acclimation was that the long-term temperature response of respiration was essentially flat over a wide range of ambient temperatures. Seasonal changes in photosynthesis were sensitive to temperature but largely independent of leaf nitrogen concentration or stomatal conductance. Over the range of day time growth temperatures (5–32 °C), we did not observe strong evidence of photosynthetic acclimation to temperature, and the long-term responses of photosynthetic parameters to ambient temperature were similar to previously published instantaneous responses. The ratio of foliar respiration to photosynthetic capacity ( R d/ A sat) was significantly greater in winter than in spring/summer. This indicates that there is little likelihood that respiration would be stimulated significantly in either of these species with moderate increases in temperature – in fact net carbon uptake was favoured at moderately higher temperatures. Model calculations demonstrate that failing to account for strong thermal acclimation of leaf respiration influences determinations of leaf carbon exchange significantly, especially for the evergreen conifer.  相似文献   
2.
Multivesicular bodies (MVBs) are cholesterol-enriched organelles formed by the endocytic pathway. The topology of vesicle formation in MVBs is identical to that of retroviral budding from the plasma membrane, and budding of human immunodeficiency virus type 1 (HIV-1) into MVBs in macrophages has recently been visualized. The Gag proteins from HIV-1, as well as many other retroviruses, contain short motifs that mediate interactions with MVBs and other endocytic components, suggesting that Gag proteins directly interface with the endocytic pathway. Here, we show that HIV-1 Gag contains an internalization signal that promotes endocytosis of a chimeric transmembrane fusion protein. Mutation of this motif within Gag strongly inhibits virus-like particle production. Moreover, wild-type Gag, but not the internalization-defective mutation, can be induced to accumulate within CD63-positive MVBs by treatment of cells with U18666A, a drug that redistributes cholesterol from the plasma membrane to MVBs. We propose that HIV-1 Gag contains a signal that promotes interaction with the cellular endocytic machinery and that the site of particle production is regulated by the subcellular distribution of cholesterol.  相似文献   
3.
The human immunodeficiency virus type 1 (HIV-1) Nef protein upregulates the expression of the invariant chain (Ii)/major histocompatibility complex class II (MHC-II) complex at the cell surface. This complex appears to reach the antigen-loading endosomal compartment at least in part via an indirect pathway in which it is internalized from the cell surface via the adaptor protein 2 (AP-2) complex. Here we provide evidence for a competition model to explain how Nef upregulates the expression of Ii at the cell surface. In this model, Nef and Ii compete for binding to AP-2. In support of this model, Nef decreased the rate of internalization of Ii from the cell surface. The AP-binding dileucine motif in Nef, ENTSLL(165), was necessary and sufficient for the upregulation of Ii. In addition, two leucine-based AP-binding motifs in the Ii cytoplasmic tail, DDQRDLI(8) and EQLPML(17), were critical for the efficient upregulation of Ii by Nef. Experiments using Nef variants in which the native dileucine-based sorting motif was replaced with similar motifs from cellular transmembrane proteins allowed modulation of AP-binding specificity. Analysis of these variants suggested that the binding of Nef to AP-2 is sufficient to upregulate Ii at the plasma membrane. Finally, interference with the expression of AP-2 caused an upregulation of Ii at the plasma membrane, and this decreased the effect of Nef. These data indicate that Nef usurps AP-2 complexes to dysregulate Ii trafficking and potentially interfere with antigen presentation in the context of MHC-II.  相似文献   
4.
5.
Nef, an accessory protein of human and simian immunodeficiency viruses, is a critical determinant of pathogenesis that promotes the progression from infection to AIDS. The pathogenic effects of Nef are in large part dependent on its ability to downregulate the macrophage and T-cell coreceptor, CD4. It has been proposed that Nef induces downregulation by linking the cytosolic tail of CD4 to components of the host-cell protein trafficking machinery. To identify these components, we developed a novel Nef-CD4 downregulation system in Drosophila melanogaster S2 cells. We found that human immunodeficiency virus type 1 (HIV-1) Nef downregulates human CD4 in S2 cells and that this process is subject to the same sequence requirements as in human cells. An RNA interference screen targeting protein trafficking genes in S2 cells revealed a requirement for clathrin and the clathrin-associated, plasma membrane-localized AP2 complex in the downregulation of CD4. The requirement for AP2 was confirmed in the human cell line HeLa. We also used a yeast three-hybrid system and glutathione S-transferase pull-down analyses to demonstrate a robust, direct interaction between HIV-1 Nef and AP2. This interaction requires a dileucine motif in Nef that is also essential for downregulation of CD4. Together, these results support a model in which HIV-1 Nef downregulates CD4 by promoting its accelerated endocytosis by a clathrin/AP2 pathway.  相似文献   
6.
A key function of the Nef protein of immunodeficiency viruses is the downregulation of the T-cell and macrophage coreceptor, CD4, from the surfaces of infected cells. CD4 downregulation depends on a conserved (D/E)XXXL(L/I)-type dileucine motif in the C-terminal, flexible loop of Nef, which mediates binding to the clathrin adaptor complexes AP-1, AP-2, and AP-3. We now report the identification of a consensus (D/E)D motif within this loop as a second, conserved determinant of interaction of Nef with AP-2, though not with AP-1 and AP-3. Mutations in this diacidic motif abrogate both AP-2 binding and CD4 downregulation. We also show that a dileucine motif from tyrosinase, both in its native context and in the context of Nef, can bind to AP-2 independently of a diacidic motif. These results thus identify a novel type of AP-2 interaction determinant, support the notion that AP-2 is the key clathrin adaptor for the downregulation of CD4 by Nef, and reveal a previously unrecognized diversity among dileucine sorting signals.  相似文献   
7.
A critical function of the human immunodeficiency virus type 1 Nef protein is the downregulation of CD4 from the surfaces of infected cells. Nef is believed to act by linking the cytosolic tail of CD4 to the endocytic machinery, thereby increasing the rate of CD4 internalization. In support of this model, weak binary interactions between CD4, Nef, and the endocytic adaptor complex, AP-2, have been reported. In particular, dileucine and diacidic motifs in the C-terminal flexible loop of Nef have been shown to mediate binding to a combination of the α and σ2 subunits of AP-2. Here, we report the identification of a potential binding site for the Nef diacidic motif on α-adaptin. This site comprises two basic residues, lysine-297 and arginine-340, on the α-adaptin trunk domain. The mutation of these residues specifically inhibits the ability of Nef to bind AP-2 and downregulate CD4. We also present evidence that the diacidic motif on Nef and the basic patch on α-adaptin are both required for the cooperative assembly of a CD4-Nef-AP-2 complex. This cooperativity explains how Nef is able to efficiently downregulate CD4 despite weak binary interactions between components of the tripartite complex.CD4, a type I transmembrane glycoprotein that serves as a coreceptor for major histocompatibility complex class II (MHC-II) molecules, is expressed on the surfaces of helper T lymphocytes and cells of the monocyte/macrophage lineage (8). Primate immunodeficiency viruses gain access to these cells by virtue of the interaction of the viral envelope glycoprotein (Env) with a combination of CD4 and a chemokine receptor (63). This interaction causes a conformational change within the Env protein that promotes the fusion of the viral envelope with the plasma membrane. Upon the delivery of the viral genetic material into the cytoplasm of the host cells, one of the first virally encoded proteins to be expressed is Nef, an accessory factor that modulates specific signal transduction and protein-trafficking pathways in a manner that optimizes the intracellular environment for viral replication (reviewed in references 21, 39, and 65). Perhaps the best characterized function of Nef is the downregulation of CD4 from the surfaces of the host cells (6, 22, 29, 45). CD4 downregulation prevents superinfection (6, 41) and enhances virion release (19, 38, 48, 66, 76), thereby contributing to the establishment of a robust infective state (24, 72).The mechanism used by the Nef protein of human immunodeficiency virus type 1 (HIV-1) to downregulate CD4 has been the subject of extensive study, but only recently have the molecular details of this process begun to be unraveled. It is generally acknowledged that HIV-1 Nef accelerates the internalization of CD4 from the plasma membrane by linking the cytosolic tail of the receptor to the clathrin-associated endocytic machinery (1, 12, 20, 34, 40, 64). In support of this model, a hydrophobic pocket comprising W57 and L58 on the folded core domain of Nef binds with millimolar affinity to the cytosolic tail of CD4 (28) (all residues and numbers correspond to the NL4-3 variant of HIV-1 Nef used in this study). In addition, a dileucine motif (ENTSLL, residues 160 to 165) (10, 16, 26) and a diacidic motif (D174 and D175) (2) on the C-terminal flexible loop of Nef mediate an interaction of micromolar affinity with the clathrin-associated, heterotetrameric (α-β2-μ2-σ2) adaptor protein 2 (AP-2) complex (12, 20, 40, 49). These interactions draw CD4 into clathrin-coated pits that eventually bud inwards as clathrin-coated vesicles (11, 27). Internalized CD4 is subsequently delivered to endosomes and then to lysosomes for degradation (3, 23, 59, 64).Despite progress in the understanding of the mechanism of Nef-induced CD4 downregulation, several important aspects remain to be elucidated. Previous studies have shown that the Nef dileucine and diacidic motifs interact with a combination of the α and σ2 subunits of AP-2 (referred to as the α-σ2 hemicomplex) (12, 20, 40, 49), but the precise location of the Nef binding sites is unknown. It also remains to be determined whether Nef can actually bind CD4 and AP-2 at the same time. Indeed, the formation of a tripartite CD4-Nef-AP-2 complex in which Nef links the cytosolic tail of CD4 to AP-2 has long been hypothesized but has never been demonstrated experimentally. Given the relatively weak affinity of Nef for the CD4 tail (28) and AP-2 (12, 40), it is unclear how such a complex could assemble and function in CD4 downregulation.In this study, we have addressed these issues by using a combination of yeast hybrid, in vitro binding, and in vivo CD4 downregulation assays. We report the identification of a candidate binding site for the Nef diacidic motif on the AP-2 complex. This site, a basic patch comprising K297 and R340 on α-adaptin, is specifically required for Nef binding and Nef-induced CD4 downregulation. We also show that the Nef diacidic motif and the α-adaptin basic patch are required for the cooperative assembly of a tripartite complex composed of the CD4 cytosolic tail, Nef, and the α-σ2 hemicomplex. The cooperative manner in which this complex is formed explains how Nef is able to efficiently downregulate CD4 from the plasma membrane despite weak binary interactions between the components of this complex.  相似文献   
8.
Human immunodeficiency virus type 1 (HIV-1), human immunodeficiency virus type 2 (HIV-2), and simian immunodeficiency virus (SIV) are the etiological agents of acquired immunodeficiency syndrome (AIDS) in humans and a related disease in non-human primates. These viruses infect T cells and macrophages that express the surface glycoprotein, CD4, because this glycoprotein acts as a co-receptor for incoming virus particles. Once infection has occurred, however, the presence of CD4 poses problems for the virus life cycle, including the possibility of superinfection, premature binding of CD4 to nascent virus particles, and inhibition of virus release. Accordingly, primate immunodeficiency viruses have evolved at least two distinct mechanisms, mediated by the Nef and Vpu viral proteins, to "downregulate" CD4 in the host cells. Nef and Vpu are mainly expressed early and late, respectively, in the viral life cycle, ensuring continuous removal of CD4. Nef links mature CD4 to components of clathrin-dependent trafficking pathways at the plasma membrane, and perhaps in intracellular compartments, leading to internalization and delivery of CD4 to lysosomes for degradation. Vpu, on the other hand, interacts with newly-synthesized CD4 in the endoplasmic reticulum, linking CD4 to the SCF ubiquitin ligase and facilitating the entry of CD4 into the endoplasmic-reticulum-associated degradation pathway. These two mechanisms lead to a dramatic reduction of CD4 expression in infected cells and are essential for efficient virus replication and disease progression.  相似文献   
9.
The Gag polyprotein of human immunodeficiency virus type 1 (HIV-1) organizes the assembly of nascent virions at the plasma membrane of infected cells. Here we demonstrate that a population of Gag is present in distinct raft-like membrane microdomains that we have termed "barges." Barges have a higher density than standard rafts, most likely due to the presence of oligomeric Gag-Gag assembly complexes. The regions of the Gag protein responsible for barge targeting were mapped by examining the flotation behavior of wild-type and mutant proteins on Optiprep density gradients. N-myristoylation of Gag was necessary for association with barges. Removal of the NC and p6 domains shifted much of the Gag from barges into typical raft fractions. These data are consistent with a model in which multimerization of myristoylated Gag proteins drives association of Gag oligomers into raft-like barges. The functional significance of barge association was revealed by several lines of evidence. First, Gag isolated from virus-like particles was almost entirely localized in barges. Moreover, a comparison of wild-type Gag with Fyn(10)Gag, a chimeric protein containing the N-terminal sequence of Fyn, revealed that Fyn(10)Gag exhibited increased affinity for barges and a two- to fourfold increase in particle production. These results imply that association of Gag with raft-like barge membrane microdomains plays an important role in the HIV-1 assembly process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号