首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4071篇
  免费   352篇
  国内免费   474篇
  2024年   3篇
  2023年   65篇
  2022年   86篇
  2021年   246篇
  2020年   158篇
  2019年   214篇
  2018年   195篇
  2017年   162篇
  2016年   222篇
  2015年   325篇
  2014年   328篇
  2013年   329篇
  2012年   418篇
  2011年   352篇
  2010年   228篇
  2009年   168篇
  2008年   201篇
  2007年   155篇
  2006年   146篇
  2005年   122篇
  2004年   95篇
  2003年   89篇
  2002年   82篇
  2001年   43篇
  2000年   48篇
  1999年   66篇
  1998年   30篇
  1997年   42篇
  1996年   26篇
  1995年   36篇
  1994年   36篇
  1993年   19篇
  1992年   36篇
  1991年   24篇
  1990年   20篇
  1989年   16篇
  1988年   12篇
  1987年   6篇
  1986年   5篇
  1985年   7篇
  1984年   12篇
  1983年   7篇
  1982年   1篇
  1981年   3篇
  1975年   4篇
  1974年   2篇
  1973年   6篇
  1953年   1篇
排序方式: 共有4897条查询结果,搜索用时 218 毫秒
1.
2.
3.
Xanthoangelol (XAG), a prenylated chalcone isolated from the Japanese herb Angelica keiskei Koidzumi, has been reported to exhibit antineoplastic properties. However, the specific anti‐tumor activity of XAG in human hepatocellular carcinoma (HCC), and the relevant mechanisms are not known. Herein, we evaluated the effect of XAG against HCC in vitro and in vivo. Although XAG treatment did not significantly reduce the viability of the Hep3B and Huh7 cell lines, it suppressed cell migration, invasion, and EMT. This anti‐metastatic effect of XAG was due to induction of autophagy, because treatment with the autophagy inhibitor 3‐methyadenine (3‐MA) or knockdown of the pro‐autophagy Beclin‐1 effectively abrogated the XAG‐induced suppression of metastasis. Mechanistically, XAG induced autophagy via activation of the AMPK/mTOR signaling pathway, and XAG treatment dramatically increased the expression of p‐AMPK while decreasing p‐mTOR expression. In addition, blocking AMPK/mTOR axis with compound C abrogated the autophagy‐mediated inhibition of metastasis. The murine model of HCC metastasis also showed that XAG effectively reduced the number of metastatic pulmonary nodules. Taken together, our results revealed that autophagy via the activation of AMPK/mTOR pathway is essential for the anti‐metastatic effect of XAG against HCC. These findings not only contribute to our understanding of the anti‐tumor activity of XAG but also provide a basis for its clinical application in HCC. Before this study, evidence of XAG on HCC was purely anecdotal; present study provides the first comprehensive assessments of XAG on HCC metastasis and investigates its underlying mechanism. Results suggest that XAG exerts anti‐metastatic properties against HCC through inducing autophagy which is mediated by the activation of AMPK/mTOR signaling pathway. This research extends our knowledge about the antineoplastic properties of XAG and suggests that induction autophagy may represent future treatment strategies for metastatic HCC.  相似文献   
4.
5.
Bioprocess and Biosystems Engineering - Ionic liquids (ILs) as “green” solvents have been widely used owing to their excellent properties, e.g., for biodiesel production. Crude glycerol...  相似文献   
6.
Breast cancer is the second leading cause of cancer death in women. Despite improvement in treatment over the past few decades, there is an urgent need for development of targeted therapies. miR-155 (microRNA-155) is frequently up-regulated in breast cancer. In this study, we demonstrate the critical role of miR-155 in regulation of cell survival and chemosensitivity through down-regulation of FOXO3a in breast cancer. Ectopic expression of miR-155 induces cell survival and chemoresistance to multiple agents, whereas knockdown of miR-155 renders cells to apoptosis and enhances chemosensitivity. Further, we identified FOXO3a as a direct target of miR-155. Sustained overexpression of miR-155 resulted in repression of FOXO3a protein without changing mRNA levels, and knockdown of miR-155 increases FOXO3a. Introduction of FOXO3a cDNA lacking the 3′-untranslated region abrogates miR-155-induced cell survival and chemoresistance. Finally, inverse correlation between miR-155 and FOXO3a levels were observed in a panel of breast cancer cell lines and tumors. In conclusion, our study reveals a molecular link between miR-155 and FOXO3a and presents evidence that miR-155 is a critical therapeutic target in breast cancer.  相似文献   
7.
Circulating miRNAs are promising biomarkers for predicting the aggressiveness of hepatocellular carcinoma (HCC). We aimed to identify differentially expressed miRNAs in the serum of HCC patients with different Barcelona Clinic Liver Cancer (BCLC) stage, and to investigate the potential of serum miRNAs as biomarkers for patient outcomes. In the discovery stage, TaqMan Low-Density Array was used to test the difference in levels of serum miRNAs between 20 patients with portal vein tumor thrombosis (PVTT) and 20 patients without PVTT. The detected serum miRNAs then were validated in 182 patients. Fifteen serum miRNAs showed more than two-fold higher expression in patients with PVTT, and miR-128-2 was found to be significantly up-regulated and was selected for further validation. In the validation stage, patients were divided into two groups with low or high serum miR-128-2 using the median expression level of all 182 cases as the cut-off point. Kaplan-Meier analysis revealed that patients with low level of serum miR-128-2 had favorable trends of survival (log rank = 13.031, p < 0.001). The median survivals for patients with a low and high level of serum miR-128-2 were 625 (95% CI, 527–722) days and 426 (95% CI, 362–491) days, respectively. MiR-128-2 was also an independent factor of overall survival (p = 0.001, HR 2.793, 95%CI 1.550, 5.033). Serum levels of the ubiquitously expressed miR-128-2 showed no significant correlation with parameters of liver damage or liver function. In addition, expressions of miR-128-2 in HCC tissues were up-regulated in comparison with adjacent non-tumor tissues. In conclusion, serum level of miR-128-2 serves as a noninvasive biomarker for the overall survival of patients with hepatocellular carcinoma.  相似文献   
8.
The antitumor agent lonidamine (LND; 1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid) is known to interfere with energy-yielding processes in cancer cells. However, the effect of LND on central energy metabolism has never been fully characterized. In this study, we report that a significant amount of succinate is accumulated in LND-treated cells. LND inhibits the formation of fumarate and malate and suppresses succinate-induced respiration of isolated mitochondria. Utilizing biochemical assays, we determined that LND inhibits the succinate-ubiquinone reductase activity of respiratory complex II without fully blocking succinate dehydrogenase activity. LND also induces cellular reactive oxygen species through complex II, which reduced the viability of the DB-1 melanoma cell line. The ability of LND to promote cell death was potentiated by its suppression of the pentose phosphate pathway, which resulted in inhibition of NADPH and glutathione generation. Using stable isotope tracers in combination with isotopologue analysis, we showed that LND increased glutaminolysis but decreased reductive carboxylation of glutamine-derived α-ketoglutarate. Our findings on the previously uncharacterized effects of LND may provide potential combinational therapeutic approaches for targeting cancer metabolism.  相似文献   
9.
10.
Many studies have verified that microRNAs contribute a lot to neuropathic pain progression. Furthermore, nerve-related inflammatory cytokines play vital roles in neuropathic pain progression. miR-183 has been identified to have a common relationship with multiple pathological diseases. However, the potential effects of miR-183 in the process of neuropathic pain remain undetermined. Therefore, we performed the current study with the purpose of finding the functions of miR-183 in neuropathic pain progression using a chronic sciatic nerve injury (CCI) rat model. We demonstrated that miR-183 expression levels were evidently reduced in CCI rats in contrast with the control group. Overexpression of miR-183 produced significant relief of mechanical hyperalgesia, as well as thermal hyperalgesia in CCI rats. Furthermore, neuropathic pain-correlated inflammatory cytokine expression levels containing interleukin-6 (IL-6) and interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2) were obviously inhibited by upregulation of miR-183. Meanwhile, dual-luciferase reporter assays showed MAP3K4 was a direct downstream gene of miR-183. The expression levels of MAP3K4 were modulated by the increased miR-183 negatively, which lead to the downregulation of IL-6, IL-1β, and COX-2, and then reduced neuropathic pain progression, respectively. Overall, our study pointed out that miR-183 was a part of the negative regulator which could relieve neuropathic pain by targeting MAP3K4. Thus it may provide a new clinical treatment for neuropathic pain patients clinical therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号