首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   9篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2001年   3篇
  2000年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1991年   2篇
  1983年   1篇
排序方式: 共有29条查询结果,搜索用时 62 毫秒
1.
In the Baltic countries (Estonia, Latvia, and Lithuania), mires directly affected by peat extraction cover almost 90,000 ha. Of these, over 26,200 ha have already been extracted and are abandoned. The main aim of this article is to give an overview of the extent of extracted peatlands in the Baltics, the legislative background around the land‐use options, and the directions of after‐use of peatlands since the middle of the 20th century. We also critically review results from restoration of abandoned extracted peatlands and assess whether they are on a trajectory toward reinitiation of paludification and functioning mire ecosystems. Almost all currently existing abandoned extracted peatlands in the Baltics were abandoned during and shortly after the Soviet period (1940–1991) without any restoration measures. The rest of the extracted areas were mostly afforested, converted into agricultural lands, berry plantations, or water bodies. The after‐use was mostly experimental, lacking systematic, proper assessment of outcome, cost and benefits, and side effects. The data are scarce but it could be estimated that only <10% (Estonia and Lithuania) and <20% (Latvia) of the total area of abandoned extracted peatlands were used for some purposes after peat extraction. Recently, several trials aimed at restoring the mire vegetation and ecosystem functions have been started in abandoned extracted peatlands in all three countries. In the coming years, the restoration of extracted peatlands in the Baltics will start on much bigger areas within different projects and initiatives cofinanced by the European Union.  相似文献   
2.
In the absence of an accurate structural model, the excited state dynamics of energy-transferring systems are often modeled using lattice models. To demonstrate the validity and other potential merits of such an approach we present the results of the modeling of the energy transfer and trapping in Photosystem I based upon the 2.5 A structural model, and show that these results can be reproduced in terms of a lattice model with only a few parameters. It has recently been shown that at room temperature the dynamics of a hypothetical Photosystem I particle, not containing any red chlorophylls (chls), are characterized by a longest (trapping) lifetime of 18 ps. The structure-based modeling of the dynamics of this particle yields an almost linear relationship between the possible values of the intrinsic charge-separation time at P700, 1/gamma, and the average single-site lifetime in the antenna, tauss. Lattice-based modeling, using the approach of a perturbed two-level model, reproduces this linear relation between tauss and 1/gamma. Moreover, this approach results in a value of the (modified) structure-function corresponding to a structure exhibiting a mixture of the characteristics of both a square and a cubic lattice, consistent with the structural model. These findings demonstrate that the lattice model describes the dynamics of the system appropriately. In the lattice model, the total trapping time is the sum of the delivery time to the reaction center and the time needed to quench the excitation after delivery. For the literature value of tauss=150 fs, both these times contribute almost equally to the total trapping time of 18 ps, indicating that the system is neither transfer- nor trap-limited. The value of approximately 9 ps for the delivery time is basically equal to the excitation-transfer time from the bulk chls to the red chls in Synechococcus elongatus, indicating that energy transfer from the bulk to the reaction center and to the red chls are competing processes. These results are consistent with low-temperature time-resolved and steady-state fluorescence measurements. We conclude that lattice models can be used to describe the global energy-transfer properties in complex chromophore networks, with the advantage that such models deal with only a few global, intuitive parameters rather than the many microscopic parameters obtained in structure-based modeling.  相似文献   
3.
Singlet-singlet annihilation experiments have been performed on trimeric and aggregated light-harvesting complex II (LHCII) using picosecond spectroscopy to study spatial equilibration times in LHCII preparations, complementing the large amount of data on spectral equilibration available in literature. The annihilation kinetics for trimers can well be described by a statistical approach, and an annihilation rate of (24 ps)(-1) is obtained. In contrast, the annihilation kinetics for aggregates can well be described by a kinetic approach over many hundreds of picoseconds, and it is shown that there is no clear distinction between inter- and intratrimer transfer of excitation energy. With this approach, an annihilation rate of (16 ps)(-1) is obtained after normalization of the annihilation rate per trimer. It is shown that the spatial equilibration in trimeric LHCII between chlorophyll a molecules occurs on a time scale that is an order of magnitude longer than in Photosystem I-core, after correcting for the different number of chlorophyll a molecules in both systems. The slow transfer in LHCII is possibly an important factor in determining excitation trapping in Photosystem II, because it contributes significantly to the overall trapping time.  相似文献   
4.
We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll (Bchl) molecules of the peripheral light-harvesting (or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850 nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments (detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature-dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires the lowest exciton states to be additionally shifted to the red, suggesting the reorganization of the exciton spectrum.  相似文献   
5.
The photosynthetic light-harvesting systems of purple bacteria and plants both utilize specific carotenoids as quenchers of the harmful (bacterio)chlorophyll triplet states via triplet-triplet energy transfer. Here, we explore how the binding of carotenoids to the different types of light-harvesting proteins found in plants and purple bacteria provides adaptation in this vital photoprotective function. We show that the creation of the carotenoid triplet states in the light-harvesting complexes may occur without detectable conformational changes, in contrast to that found for carotenoids in solution. However, in plant light-harvesting complexes, the triplet wavefunction is shared between the carotenoids and their adjacent chlorophylls. This is not observed for the antenna proteins of purple bacteria, where the triplet is virtually fully located on the carotenoid molecule. These results explain the faster triplet-triplet transfer times in plant light-harvesting complexes. We show that this molecular mechanism, which spreads the location of the triplet wavefunction through the pigments of plant light-harvesting complexes, results in the absence of any detectable chlorophyll triplet in these complexes upon excitation, and we propose that it emerged as a photoprotective adaptation during the evolution of oxygenic photosynthesis.  相似文献   
6.
In order to determine the relationship between the pigment–protein and the pigment–pigment interactions, the measurements of absorption spectra of the peripheral light-harvesting complex LH2 from the purple bacteria Rhodobacter sphaeroides solvated in glycerol/buffer solution were carried out in a wide temperature range, from 4 to 250 K. The SDFs used for simulating the temperature dependence of B800 and B850 bands were determined in a parametric form. To fit experimental spectra the overall exciton–phonon coupling had to be assumed to be weak for B850 (λ/2V ≈ 0.3, where λ is the reorganization energy and V is the nearest-neighbor dipole–dipole coupling for bacteriochlorophylls). At physiological temperatures the intermediate nuclear bath dynamics compares with the magnitude of energy gap fluctuations. Slower dynamics with κ ≈ 0.39, where κ is the ratio of the nuclear relaxation rate and the line width parameter, determines the spectral shape of B850 whilst faster modulations characterize B800 (κ ≈2.39). The static disorder for the B800 band is relatively high with the characteristic value of the inhomogeneous bandwidth Γinh ≈120 cm−1, while for the B850 band this value is almost equal to the dipole–dipole coupling strength (Γinh ≈360 cm−1). It has been found that the LH2 absorption spectrum is likely to be influenced by the temperature dependence of the dielectric constant of the solution in the high temperature range, when the glycerol/buffer solution is in the liquid state.  相似文献   
7.
Structural arrangement of pigment molecules of Photosystem I of photosynthetic cyanobacterium Synechococcus elongatus is used for theoretical modeling of the excitation energy spectrum. It is demonstrated that a straightforward application of the exciton theory with the assumption of the same molecular transition energy does not describe the red side of the absorption spectrum. Since the inhomogeneity in the molecular transition energies caused by a dispersive interaction with the molecular surrounding cannot be identified directly from the structural model, the evolutionary search procedure is used for fitting the low temperature absorption and circular dichroism spectra. As a result, one dimer, three trimers and one tetramer of chlorophyll molecules responsible for the red side of the absorption spectrum with their assignment to the spectroscopically established three bands at 708, 714 and 719 nm are determined. All of them are found to be situated not in the very close vicinity of the reaction center but are encircling it almost at the same distance. In order to explain the unusual broadening on the red side of the spectrum the exciton state mixing with the charge transfer (CT) states is considered. It is shown that two effects can be distinguished as caused by mixing of those states: (i) the oscillator strength borrowing by the CT state from the exciton transition and (ii) the borrowing of the high density of the CT state by the exciton state. The intermolecular vibrations between two counter-charged molecules determine the high density in the CT state. From the broad red absorption wing it is concluded that the CT state should be the lowest state in the complexes under consideration. Such mixing effect enables resolving the diversity in the molecular transition energies as determined by different theoretical approaches.  相似文献   
8.
9.
Photosynthesis Research - Non-photochemical quenching (NPQ) is responsible for protecting the light-harvesting apparatus of plants from damage at high light conditions. Although it is agreed that...  相似文献   
10.
The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic K(d) approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号