首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2006年   1篇
  2003年   2篇
  2001年   2篇
  2000年   3篇
  1941年   1篇
排序方式: 共有14条查询结果,搜索用时 531 毫秒
1.
Variations in plant community composition across the landscape can influence nutrient retention and loss at the watershed scale. A striking example of plant species importance is the influence of N2-fixing red alder (Alnus rubra) on nutrient cycling in the forests of the Pacific Northwest. To understand the influence of red alder on watershed nutrient export, we studied the chemistry of 26 small watershed streams within the Salmon River basin of the Oregon Coast Range. Nitrate and dissolved organic nitrogen (DON) concentrations were positively related to broadleaf cover (dominated by red alder: 94% of basal area), particularly when near-coastal sites were excluded (r 2 = 0.65 and 0.68 for nitrate-N and DON, respectively). Nitrate and DON concentrations were more strongly related to broadleaf cover within entire watersheds than broadleaf cover within the riparian area alone, which indicates that leaching from upland alder stands plays an important role in watershed nitrogen (N) export. Nitrate dominated over DON in hydrologic export (92% of total dissolved N), and nitrate and DON concentrations were strongly correlated. Annual N export was highly variable among watersheds (2.4–30.8 kg N ha–1 y–1), described by a multiple linear regression combining broadleaf and mixed broadleaf–conifer cover (r2 = 0.74). Base cation concentrations were positively related to nitrate concentrations, which suggests that nitrate leaching increases cation losses. Our findings provide evidence for strong control of ecosystem function by a single plant species, where leaching from N saturated red alder stands is a major control on N export from these coastal watersheds.  相似文献   
2.
The concentration of dissolved inorganic nitrogen (DIN) in the porewaters of shallow-water tropical marine sediments can be as high as 50-100 μM, at sediment depths of shallow as 20 cm. These concentrations are at least two-orders of magnitude greater than the DIN concentration in the overlying water. High porewater concentrations, and the resulting concentration gradient, result in substantial efflux of DIN from the sediments to the water column. This sediment-derived DIN may be an important nutrient source for benthic algae. In Kaneohe Bay, Hawaii, a mean ammonium efflux rate of 490 μmolm(-2)day(-1) and a mean nitrate+nitrite efflux rate of 123 μmolm(-2)day(-1) were measured on reef slopes in the habitat occupied by benthic algae. It has been demonstrated that this nutrient source is essential for the growth of at least one abundant alga, Dictyosphaeria cavernosa, and possibly others. The DIN concentrations in Kaneohe Bay sediment porewaters, and the rates of DIN efflux from those sediments, are greater than porewater concentrations and efflux rates reported for other, more pristine tropical sites. The rate of sedimentation of particulate nitrogen is similar to rates reported from other tropical lagoons, and about twice as high as the efflux rate of total dissolved nitrogen. Given the present low nutrient concentrations in the water column of the Bay, these results support the view that nutrient efflux from the benthos is in part responsible for the persistence of D. cavernosa on these reefs. It is possible that efflux of DIN from sediments may be responsible for sustained benthic algal productivity in similar habitats on other tropical reefs.  相似文献   
3.
Since the 1960s, and possibly earlier, the macroalga Dictyosphaeria cavernosa has overgrown and displaced corals on reef slopes and outer reef flats in Kaneohe Bay, Oahu. This shift in reef community composition is generally attributed to nutrient enrichment resulting from sewage discharge. Following the diversion of most of the sewage effluent in 1977-1978, it was expected that D. cavernosa growth would become nutrient-limited and its abundance would consequently decline, but the alga remains abundant in much of the bay. One explanation for its persistence is that nutrients are once again high enough to support the alga's growth. An alternative explanation is that there has been a reduction in grazing intensity in the bay. In this study we resurveyed the distribution and abundance of D. cavernosa at 120 reef slope sites originally surveyed in 1969. We conducted additional surveys to estimate the biomass of herbivores and the areal coverage of D. cavernosa and other macroalgae on reef slopes and flats. Field experiments were used to determine spatial and temporal patterns of grazing intensity on and growth rates of D. cavernosa and the introduced macroalga Acanthophora spicifera. Laboratory experiments were used to examine preferences among herbivores for some of the most abundant macroalgae on Kaneohe Bay reefs. Twenty years after sewage diversion, D. cavernosa cover on reef slopes has decreased substantially in southern Kaneohe Bay, the site of most of the historical sewage discharge. D. cavernosa cover has changed less in other regions, remaining high in the central bay and low in the north bay. D. cavernosa thalli protected by grazer exclusion cages sustained positive growth rates on reef slopes and flats throughout the bay. Reduced nutrient concentrations may have caused a reduction in D. cavernosa growth rates, and a consequent reduction in D. cavernosa abundance in the south bay shortly after sewage diversion. Measurements of grazing intensity and surveys of herbivorous fish abundance suggest that the continued abundance of D. cavernosa is the result of a reduction in grazing intensity. Reduced grazing intensity on D. cavernosa may in turn be the result of a historical reduction in herbivore biomass or the establishment of several introduced macroalgae on reef flats. The introduced species are preferred by herbivorous fishes over D. cavernosa, as indicated by preference tests. The hypothesis that reduced grazing pressure on D. cavernosa is related to the establishment of introduced species is supported by the observation that D. cavernosa cover is highest on reef slopes where the cover of preferred introduced macroalgae on the adjacent outer reef flat is also high. Conversely, D. cavernosa cover is low or zero on reef slopes where the cover of introduced macroalgae on the adjacent reef flat is low or zero  相似文献   
4.
Native Hawaiian estuarine detritivores; the prawn Macrobrachium grandimanus, and the neritid gastropod Neritina vespertina, were maintained in flow-through microcosms with conditioned leaves from two riparian tree species, Hau (Hibiscus tiliaceus) and guava (Psidium guajava). Their ability to beak down leaf detritus was determined when alone and when they were together. In single-species treatments, N. vespertina processed leaves from both trees at higher rates than M. grandimanus, but in combined treatments, facilitation occurred when the substrate consisted of Hau leaves, and interference occurred when the substrate consisted of guava leaves. From this, we conclude that whether detritivore species are functionally redundant, facilitating or inhibiting in their processing of detritus depends not only on the detritivore species, but also on the species composition of the detritus food source.  相似文献   
5.
Actinomyces hyphae imbedded in the middle lamellae of potato tuber cells may be stained in sections by the use of a modified Gram's stain. The modifications are: a very strong (5%) solution of crystal violet in anilin oil; a 24-hour exposure to both the dye and the iodine solution; and a slow decolorization in absolute alcohol until no more color flows.  相似文献   
6.
7.
In temperate forested streams, fruit from riparian trees is generally a minor and seasonal component of the allo‐chthonous detritus. In contrast, riparian fruit input to tropical streams is often high and continuous. Detrital fruit is abundant in some forested Hawaiian streams compared to other forms of riparian detritus, and rates of leaf litter processing by macroscopic invertebrates are very low. These observations suggested that fruit is an important food resource for detritivores. A microcosm system was used to measure the rates at which two common detrital fruits, guava and mango, were processed by two common detritivores, the prawn Macrobrachium lar and the gastropod Tarebia granifera. Comparisons of fruit weight loss rates normalized by detritivore weight indicated that M, lar processed guavas at significantly higher rates than T. granifera, differences in rates of mango processing by M. lar and T. granifera were not significant. Microcosms containing both M. lar and T. granifera were used to test for interactions between the invertebrates that affected rates of mango processing. No interspecific interactions were detected. A field study was conducted in Kaiwiki Stream, Island of Hawaii, to determine rates of detrital fruit input and export. Detrital fruit was supplied to the study area year‐round, with peaks corresponding to summer and autumn fruiting seasons. Guavas and mangos accounted for 85 percent of the fruit biomass entering the stream and 92 percent of the fruit exported from the stream. Mean daily export rates of guava were 7 percent of input, and export rates of mango were 5 percent of input. These measurements suggested that most of the fruit entering the stream is retained and comprises a substantial food resource for detritivores. Comparisons of the biomass‐specific rates at which M. lar and T. granifera processed mangos and guavas with the rates at which mangos and guavas entered Kaiwiki Stream suggested that these invertebrates can process most of the detrital fruit in the stream.  相似文献   
8.
Larned  Scott T.  Santos  Scott R. 《Hydrobiologia》2000,432(1-3):101-111
To date, most studies of light- and nutrient-limited primary productivity in forested streams have been carried out in deciduous forests of temperate, continental regions. Conceptual models of light and nutrient limitation have been developed from these studies, but their restricted geographic range reduces the generality of such models. Unlike temperate continental streams, streams on tropical high islands are characterized by flashy, unpredictable discharge and riparian canopies that do not vary seasonally. These contrasting conditions suggest that patterns of light and nutrient limitation in tropical streams may differ from those in temperate streams. The effects of light, and nitrogen and phosphorus availability on periphyton accrual (measured as chlorophyll a per unit area) were investigated using field experiments in 4 low-order streams on the island of Oahu, Hawaii. Levels of chlorophyll a in partially-shaded stream pools were significantly greater than in heavily-shaded pools, and nutrient-enrichment increased the level of chlorophyll a in partially-shaded pools but not in heavily-shaded pools. In each stream, phosphate enrichment resulted in an increase in the level of chlorophyll a, but nitrate enrichment had no effect. Spates following rainstorms occur frequently in these streams, and may increase periphyton productivity by increasing the flux of nutrients to algal cells. However, differences in inorganic nitrogen and phosphorus concentrations measured during spates and baseflow were small, and during some spates, concentrations of these two nutrients declined relative to baseflow concentrations. These observations suggest that phosphorus limitation was not alleviated by spates.  相似文献   
9.
10.
Efforts to rehabilitate degraded urban streams generally focus on improving physical habitat and rarely include reestablishing biota such as macrophytes. Our objectives in this study were to propagate and transplant native macrophytes into a South Island, New Zealand, urban stream undergoing rehabilitation, assess macrophyte survival and growth, and determine whether native macrophytes suppress non-native macrophytes and/or enhance stream invertebrate communities. Effects of native macrophytes on invertebrates and non-native macrophytes were assessed after transplanting patches of native macrophytes into a 230-m-long stream section. A 100-m-long section upstream was left unplanted for subsequent comparisons. Following the study, a survey was conducted to gauge public opinion about the rehabilitation project and determine whether macrophytes were prominent in perceptions of stream health. In the first growing season, native macrophyte cover in the planted stream section increased from 1.5 to 20%, and then decreased during winter. Regrowth from rhizomes led to rapid aboveground growth during the second year, when cover reached 51%. Non-native macrophytes colonized the stream the first year, but native macrophytes appeared to limit the spread of non-natives, which were absent in the planted section by the second spring. Native macrophyte establishment did not enhance invertebrate communities as predicted; few invertebrate metrics differed significantly between the planted and unplanted sections. Pollution- and sediment-tolerant invertebrate taxa were abundant in both sections, suggesting that invertebrate colonization was limited by water quality or sedimentation, not macrophyte composition. Survey respondents considered the stream to be visually and ecologically improved after rehabilitation, and macrophyte establishment was generally considered positive or neutral.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号