首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   10篇
  2023年   1篇
  2021年   2篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   6篇
  2013年   4篇
  2012年   3篇
  2011年   6篇
  2010年   7篇
  2009年   6篇
  2008年   1篇
  2007年   7篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1990年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有81条查询结果,搜索用时 31 毫秒
1.
2.
3.

Background  

Owing to rapid expansion of protein structure databases in recent years, methods of structure comparison are becoming increasingly effective and important in revealing novel information on functional properties of proteins and their roles in the grand scheme of evolutionary biology. Currently, the structural similarity between two proteins is measured by the root-mean-square-deviation (RMSD) in their best-superimposed atomic coordinates. RMSD is the golden rule of measuring structural similarity when the structures are nearly identical; it, however, fails to detect the higher order topological similarities in proteins evolved into different shapes. We propose new algorithms for extracting geometrical invariants of proteins that can be effectively used to identify homologous protein structures or topologies in order to quantify both close and remote structural similarities.  相似文献   
4.

Background  

Peripheral tissue inflammation initiates hyperalgesia accompanied by tissue acidosis, nociceptor activation, and inflammation mediators. Recent studies have suggested a significantly increased expression of acid-sensing ion channel 3 (ASIC3) in both carrageenan- and complete Freund's adjuvant (CFA)-induced inflammation. This study tested the hypothesis that acupuncture is curative for mechanical hyperalgesia induced by peripheral inflammation.  相似文献   
5.
Indo‐Pacific reef corals growing for years in closed‐system aquaria provide an alternate means to investigate host–symbiont specificity and stability. The diversity of dinoflagellate endosymbionts (Symbiodinium spp.) from coral communities in private and public aquaria was investigated using molecular‐genetic analyses. Of the 29 symbiont types (i.e., species) identified, 90% belonged to the most prevalent group of Symbiodinium harbored by Indo‐Pacific reef corals, Clade C, while the rest belonged to Clade D. Sixty‐five percent of all types were known from field surveys conducted throughout the Pacific and Indian oceans. Because specific coral–dinoflagellate partnerships appear to have defined geographic distributions, correspondence of the same symbionts in aquarium and field‐collected specimens identifies regions where particular colonies must have been collected in the wild. Symbiodinium spp. in clade D, believed to be “stress‐tolerant” and/or “opportunistic,” occurred in a limited number of individual colonies. The absence of a prevalent, or “weedy,” symbiont suggests that conditions under which aquarium corals are grown do not favor competitive replacements of their native symbiont populations. The finding of typical and diverse assemblages of Symbiodinium spp. among aquarium corals living many years under variable chemical/physical conditions, artificial and natural light, while undergoing fragmentation periodically, indicates that individual colonies maintain stable, long‐term symbiotic associations.  相似文献   
6.
Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free‐living species. In particular, cultures of Symbiodinium clade E obtained from temperate environments were recently shown to feed phagotrophically on bacteria and microalgae. Genetic, behavioral, and morphological evidence indicate that strains of clade E obtained from the northwestern, southwestern, and northeastern temperate Pacific Ocean as well as the Mediterranean Sea constitute a single species: Symbiodinium voratum n. sp. Chloroplast ribosomal 23S and mitochondrial cytochrome b nucleotide sequences were the same for all isolates. The D1/D2 domains of nuclear ribosomal DNA were identical among Western Pacific strains, but single nucleotide substitutions differentiated isolates from California (USA) and Spain. Phylogenetic analyses demonstrated that S. voratum is well‐separated evolutionarily from other Symbiodinium spp. The motile, or mastigote, cells from different cultures were morphologically similar when observed using light, scanning, and transmission electron microscopy; and the first complete Kofoidian plate formula for a Symbiodinium sp. was characterized. As the largest of known Symbiodinium spp., the average coccoid cell diameters measured among cultured isolates ranged between 12.2 (± 0.2 SE) and 13.3 (± 0.2 SE) μm. Unique among species in the genus, a high proportion (approximately 10–20%) of cells remain motile in culture during the dark cycle. Although S. voratum occurs on surfaces of various substrates and is potentially common in the plankton of coastal areas, it may be incapable of forming stable mutualistic symbioses.  相似文献   
7.
Merlin, the Drosophila homologue of the human tumor suppressor gene Neurofibromatosis 2 (NF2), is required for the regulation of cell proliferation and differentiation. To better understand the cellular functions of the NF2 gene product, Merlin, recent work has concentrated on identifying proteins with which it interacts either physically or functionally. In this article, we describe genetic screens designed to isolate second-site modifiers of Merlin phenotypes from which we have identified five multiallelic complementation groups that modify both loss-of-function and dominant-negative Merlin phenotypes. Three of these groups, Group IIa/scribbler (also known as brakeless), Group IIc/blistered, and Group IId/net, are known genes, while two appear to be novel. In addition, two genes, Group IIa/scribbler and Group IIc/blistered, alter Merlin subcellular localization in epithelial and neuronal tissues, suggesting that they regulate Merlin trafficking or function. Furthermore, we show that mutations in scribbler and blistered display second-site noncomplementation with one another. These results suggest that Merlin, blistered, and scribbler function together in a common pathway to regulate Drosophila wing epithelial development.  相似文献   
8.
9.
Reverse genetic analysis in Drosophila has been greatly aided by a growing collection of lethal P transposable element insertions that provide molecular tags for the identification of essential genetic loci. However, because the screens performed to date primarily have generated autosomal P-element insertions, this collection has not been as useful for performing reverse genetic analysis of X-linked genes. We have designed a reverse genetic screen that takes advantage of the hemizygosity of the X chromosome in males together with a cosmid-based transgene that serves as an autosomally linked duplication of a small region of the X chromosome. The efficacy and efficiency of this method is demonstrated by the isolation of mutations in Drosophila homologues of two well-studied genes, the human Neurofibromatosis 2 tumor suppressor and the yeast CDC42 gene. The method we describe should be of general utility for the isolation of mutations in other X-linked genes, and should also provide an efficient method for the isolation of new alleles of existing X-linked or autosomal mutations in Drosophila.  相似文献   
10.
We tested the hypothesis that there is a relation between phylotypes (phylogenetic types, as determined by restriction fragment length polymorphism (RFLP) and partial sequence analysis of the small subunit ribosomal RNA gene (SSUrDNA)) and the synthesis of mycosporine-like amino acids (MAAs) by symbiotic dinoflagellates under the influence of ultraviolet radiation (UV-B/A) and photosynthetically active radiation (PAR). We exposed 27 isolates of symbiotic dinoflagellates simultaneously to UV-B/A and PAR, and subsequently determined the MAAs present in cell extracts and in the media. The algae used included 24 isolates of Symbiodinium spp. originating from jellyfishes, sea anemones, zoanthids, scleractinians, octocorals, and bivalves, and three others in the genera Gymnodinium, Gloeodinium and Amphidinium from a jellyfish, an hydrocoral and a flatworm, respectively. In this study, all of the phylotype A Symbiodinium spp. synthesized up to three identified MAAs. None of the 11 cultured phylotypes B and C Symbiodinium spp. synthesized MAAs. The three non-Symbiodinium symbionts also synthesized up to three MAAs. The results support a conclusion that phylotype A Symbiodinium spp. have a high predilection for the synthesis of MAAs, while phylotypes B and C do not. Synthesis of MAAs by symbiotic dinoflagellates in culture does not appear to relate directly to depths or to the UV exposure regimes from which the consortia were collected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号