首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2003年   2篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1959年   1篇
  1958年   1篇
  1957年   2篇
  1956年   6篇
  1955年   3篇
  1954年   4篇
  1953年   2篇
  1951年   3篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
2.
3.
Upland tropical forests have expanded and contracted in response to past climates, but it is not clear whether similar dynamics were exhibited by gallery (riparian) forests within savanna biomes. Because such forests generally have access to ample water, their extent may be buffered against changing climates. We tested the long‐term stability of gallery forest boundaries by characterizing the border between gallery forests and savannas and tracing the presence of gallery forest through isotopic analysis of organic carbon in the soil profile. We measured leaf area index, grass vs. shrub or tree coverage, the organic carbon, phosphorus, nitrogen and calcium concentrations in soils and the carbon isotope ratios of soil organic matter in two transitions spanning gallery forests and savanna in a Cerrado ecosystem. Gallery forests without grasses typically show a greater leaf area index in contrast to savannas, which show dense grass coverage. Soils of gallery forests have significantly greater concentrations of organic carbon, phosphorus, nitrogen and calcium than those of savannas. Soil organic carbon of savannas is significantly more enriched in 13C compared with that of gallery forests. This difference in enrichment is in part caused by the presence of C4 grasses in savanna ecosystem and its absence in gallery forests. Using the 13C abundance as a signature for savanna and gallery forest ecosystems in 1 m soil cores, we show that the borders of gallery forests have expanded into the savanna and that this process initiated at least 3000–4000 bp based on 14C analysis. Gallery forests, however, may be still expanding as we found more recent transitions according to 14C activity measurements. We discuss the possible mechanisms of gallery forest expansion and the means by which nutrients required for the expansion of gallery forest might accumulate.  相似文献   
4.
The higher taxonomy of the 20 known genera of Afrotropical freshwater crabs is revised to reflect the evolutionary relationships revealed by the consensus of a series of recent morphological and molecular phylogenetic studies of the group. The Afrotropical freshwater crab genera fall into two monophyletic groups, one from Socotra with two genera (Potamidae) and another that includes the remaining 18 genera. The latter group, which includes the bulk of the region's freshwater crab fauna, forms a well-supported monophyletic clade. We recognize two monophyletic sister groups (subfamilies) within the Potamonautidae, one for seven genera from Africa (the Potamonautinae) and one for 11 genera from Africa, the Seychelles, and Madagascar (the Deckeniinae). The Deckeniinae includes two monophyletic groups (tribes), one with seven genera from Madagascar (the Hydrothelphusini), and one with four genera from Africa and the Seychelles (the Deckeniini). The Deckeniini is further divided here into two subtribes, the Deckeniina and the Globonautina. The Platythelphusidae is not recognized, and the Deckeniidae and Globonautinae are lowered in rank. There is no phylogenetic support for the continued inclusion of any genus from the Afrotropical region in the Gecarcinucidae which is treated here as an exclusively Oriental family. The Afrotropical freshwater crabs (excluding those from Socotra) form a monophyletic assemblage that has no representatives outside of the region. The wider biogeographical implications of the taxonomic revision are discussed.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 399–413.  相似文献   
5.
The function of the excretory system of the teredinid bivalveNausitora fusticula is discussed on the basis of new informationon histology and ultrastructure. The wall of the auricles islined with podocytes that allow haemolymph ultrafiltration tothe pericardial cavity. These podocytes also show apical microvilliwith absorptive activity. The primary urine is drained fromthe pericardial cavity to the afferent ducts by a citiated bulb-likestructure. Theafferent and efferent ducts together form thekidney body. The afferent duct shows structures related to absorption,excretion and conduction of the urine. The efferent ducts, however,have structures concerned only with urine absorption and conduction. (Received 13 January 1997; accepted 15 July 1997)  相似文献   
6.
7.
8.
9.
10.
Spatially heterogeneous ecosystems form a majority of land types in the vast drylands of the globe. To evaluate climate‐change effects on CO2 fluxes in such ecosystems, it is critical to understand the relative responses of each ecosystem component (microsite). We investigated soil respiration (Rs) at four sites along an aridity gradient (90–780 mm mean annual precipitation, MAP) during almost 2 years. In addition, Rs was measured in rainfall manipulations plots at the two central sites where ~30% droughting and ~30% water supplementation treatments were used over 5 years. Annual Rs was higher by 23% under shrub canopies compared with herbaceous gaps between shrubs, but Rs at both microsites responded similarly to rainfall reduction. Decreasing precipitation and soil water content along the aridity gradient and across rainfall manipulations resulted in a progressive decline in Rs at both microsites, i.e. the drier the conditions, the larger was the effect of reduction in water availability on Rs. Annual Rs on the ecosystem scale decreased at a slope of 256/MAP g C m?2 yr?1 mm?1 (r2=0.97). The reduction in Rs amounted to 77% along the aridity gradient and to 16% across rainfall manipulations. Soil organic carbon (SOC) decreased with declining precipitation, and variation in SOC stocks explained 77% of the variation in annual Rs across sites, rainfall manipulations and microsites. This study shows that rainfall manipulations over several years are a useful tool for experimentally predicting climate‐change effects on CO2 fluxes for time scales (such as approximated by aridity gradients) that are beyond common research periods. Rainfall reduction decreases rates of Rs not only by lowering biological activity, but also by drastically reducing shrub cover. We postulate that future climate change in heterogeneous ecosystems, such as Mediterranean and deserts shrublands will have a major impact on Rs by feedbacks through changes in vegetation structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号