首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   13篇
  2021年   1篇
  2018年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1988年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1978年   1篇
排序方式: 共有84条查询结果,搜索用时 31 毫秒
1.
2.
Tissue mechanics have been shown to play a key role in the regulation of morphogenesis in animals [1-4] and may have an equally important role in plants [5-9]. The aerial organs of plants are formed at the shoot apical meristem following a specific phyllotactic pattern [10]. The initiation of an organ from the meristem requires a highly localized irreversible surface deformation, which depends on the demethylesterification of cell wall pectins [11]. Here, we used atomic force microscopy (AFM) to investigate whether these chemical changes lead to changes in tissue mechanics. By mapping the viscoelasticity and elasticity in living meristems, we observed increases in tissue elasticity, correlated with pectin demethylesterification, in primordia and at the site of incipient organs. Measurements of tissue elasticity at various depths showed that, at the site of incipient primordia, the first increases occurred in subepidermal tissues. The results support the following causal sequence of events: (1) demethylesterification of pectin is triggered in subepidermal tissue layers, (2) this contributes to an increase in elasticity of these layers-the first observable mechanical event in organ initiation, and (3) the process propagates to the epidermis during the outgrowth of the organ.  相似文献   
3.
Ethanolic fermentation is classically associated with flooding tolerance when plant cells switch from respiration to anaerobic fermentation. However, recent studies have suggested that fermentation also has important functions in the presence of oxygen, mainly in germinating pollen and during abiotic stress. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we characterize the PDC gene family in Arabidopsis. PDC is encoded by four closely related genes. By using real-time quantitative polymerase chain reaction, we determined the expression levels of each individual gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental stress conditions. We show that PDC1 is the only gene induced under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other environmental stresses. We also characterize the expression of the aldehyde dehydrogenase (ALDH) gene family. None of the three genes is induced by anoxia but ALDH2B7 reacts strongly to ABA application and dehydration, suggesting that ALDH may play a role in aerobic detoxification of acetaldehyde. We discuss the possible role of ethanolic fermentation as a robust back-up energy production pathway under adverse conditions when mitochondrial function is disturbed.  相似文献   
4.
The two related Petunia species, P. axillaris and P. integrifolia, are sympatric at various locations in South America but do not hybridise. Divergent pollinator preferences are believed to be in part responsible for their reproductive isolation. The volume of nectar produced and several components of flower morphology might contribute to pollinator-dependant reproductive isolation. In this study, we aimed to identify the genetic changes underlying the quantitative differences observed between these two Petunia species in flower size and nectar volume. We mapped quantitative trait loci (QTL) responsible for the different phenotypes of P. axillaris and P. integrifolia in an inter-specific backcross population. QTL of small to moderate effect control the differences in flower size and volume of nectar. In addition, we observed strong suppression of meiotic recombination in Petunia, even between closely related species, which precluded a fine resolution of QTL mapping. Thus, our data suggest that flower size and nectar volume are highly polygenic. They are likely to have evolved gradually through pollinator-mediated adaptation or reinforcement, and are not likely to have been primary factors in early steps of pollinator isolation of P. axillaris and P. integrifolia.  相似文献   
5.
Aldehyde dehydrogenase in tobacco pollen   总被引:5,自引:0,他引:5  
  相似文献   
6.
The NeIF-4A10 gene belongs to a family of at least ten genes, all of which encode closely related isoforms of translation initiation factor 4A. The promoter region of NeIF-4A10 was sequenced, and four mRNA 5 ends were determined. Deletions containing 2750, 689 and 188 bp of untranscribed upstream DNA were fused to the GUS reporter gene and introduced into transgenic tobacco. The three constructs mediated GUS expression in all cells of the leaf, stem and shoot apical meristem. Control experiments using in situ hybridization and tissue printing indicated that the observed GUS expression matches the expression patterns of NeIF-4A mRNA and protein. This detailed analysis at the level of mRNA, protein and reporter gene expression shows that NeIF-4A10 is an ideal constitutively expressed control gene. We argue that inclusion of such a control gene in experiments dealing with specifically expressed genes is in many cases essential for the correct interpretation of observed expression patterns.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号