首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2019年   1篇
  2011年   1篇
  2010年   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.

Lut desert is situated in one of the extremely arid climatic zones of Iran and is one of the hottest deserts in our plant with the extreme fluctuation of temperature over a day. The main objective of this study is to characterize the diversity of the culturable actinomycetes and preliminary evaluation of their extracts as antimicrobial components on drug resistant pathogens. Twenty-four soil samples were collected, successively diluted and inoculated into the different culture media to support the growth of most culturable bacteria including actinomycetes. Phenotypic and molecular methods were used for accurate identification of recovered isolates particularly actinomycetes at the genus and species levels. The isolates were also evaluated for their inhibitory activities against drug resistant Acinetobacter baumannii, Enterococcus faecium, Klebsiella pneumoniae and Staphylococcus aureus. A total of 56 isolates recovered from the samples. Based on phenotypic tests, 41 isolates were identified as actinomycetes, amongst them 8 isolates were active against drug resistant pathogens. Our study revealed Lut desert, as one of the hottest deserts in the world, is the habitat to diverse taxa of bacteria particularly actinomycetes which have potential novel antimicrobial components.

  相似文献   
2.

Background  

Biological mass transport processes determine the behavior and function of cells, regulate interactions between synthetic agents and recipient targets, and are key elements in the design and use of biosensors. Accurately predicting the outcomes of such processes is crucial to both enhancing our understanding of how these systems function, enabling the design of effective strategies to control their function, and verifying that engineered solutions perform according to plan.  相似文献   
3.
This paper is about how cortical recurrent interactions in primary visual cortex (V1) together with feedback from extrastriate cortex can account for spectral peaks in the V1 local field potential (LFP). Recent studies showed that visual stimulation enhances the γ-band (25–90 Hz) of the LFP power spectrum in macaque V1. The height and location of the γ-band peak in the LFP spectrum were correlated with visual stimulus size. Extensive spatial summation, possibly mediated by feedback connections from extrastriate cortex and long-range horizontal connections in V1, must play a crucial role in the size dependence of the LFP. To analyze stimulus-effects on the LFP of V1 cortex, we propose a network model for the visual cortex that includes two populations of V1 neurons, excitatory and inhibitory, and also includes feedback to V1 from extrastriate cortex. The neural network model for V1 was a resonant system. The model’s resonance frequency (ResF) was in the γ-band and varied up or down in frequency depending on cortical feedback. The model’s ResF shifted downward with stimulus size, as in the real cortex, because increased size recruited more activity in extrastriate cortex and V1 thereby causing stronger feedback. The model needed to have strong local recurrent inhibition within V1 to obtain ResFs that agree with cortical data. Network resonance as a consequence of recurrent excitation and inhibition appears to be a likely explanation for γ-band peaks in the LFP power spectrum of the primary visual cortex.  相似文献   
4.
A novel mathematical model in the framework of a nonlinear integro-partial differential equation governing biofluids flow in fractured biomaterials is proposed, solved, verified, and evaluated. A semi-analytical solution is derived for the equation, verified by a mass-lumped Galerkin finite element method (FEM), and calibrated with two in vitro experimental datasets. The solution process uses separation of variables and results in explicit expression involving complete and incomplete beta functions. The proposed semi-analytical model shows reasonable agreements with the finite element simulator as well as with two in vitro experimental time series and can be successfully used to simulate biofluids (e.g. water, blood, oil, etc.) flow in natural and synthetic porous biomaterials.  相似文献   
5.

Background  

Quantification of in-vivo biomolecule mass transport and reaction rate parameters from experimental data obtained by Fluorescence Recovery after Photobleaching (FRAP) is becoming more important.  相似文献   
6.
A class of novel explicit analytic solutions for a system of n+1 coupled partial differential equations governing biomolecular mass transfer and reaction in living organisms are proposed, evaluated, and analyzed. The solution process uses Laplace and Hankel transforms and results in a recursive convolution of an exponentially scaled Gaussian with modified Bessel functions. The solution is developed for wide range of biomolecular binding kinetics from pure diffusion to multiple binding reactions. The proposed approach provides solutions for both Dirac and Gaussian laser beam (or fluorescence-labeled biomacromolecule) profiles during the course of a Fluorescence Recovery After Photobleaching (FRAP) experiment. We demonstrate that previous models are simplified forms of our theory for special cases. Model analysis indicates that at the early stages of the transport process, biomolecular dynamics is governed by pure diffusion. At large times, the dominant mass transfer process is effective diffusion. Analysis of the sensitivity equations, derived analytically and verified by finite difference differentiation, indicates that experimental biologists should use full space-time profile (instead of the averaged time series) obtained at the early stages of the fluorescence microscopy experiments to extract meaningful physiological information from the protocol. Such a small time frame requires improved bioinstrumentation relative to that in use today. Our mathematical analysis highlights several limitations of the FRAP protocol and provides strategies to improve it. The proposed model can be used to study biomolecular dynamics in molecular biology, targeted drug delivery in normal and cancerous tissues, motor-driven axonal transport in normal and abnormal nervous systems, kinetics of diffusion-controlled reactions between enzyme and substrate, and to validate numerical simulators of biological mass transport processes in vivo.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号