首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  2022年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Alpha satellite DNA is a repetitive sequence known to be a major DNA component of centromeres in primates (order Primates). New World monkeys form one major taxon (parvorder Platyrrhini) of primates, and their alpha satellite DNA is known to comprise repeat units of around 340 bp. In one species (Azara''s owl monkey Aotus azarae) of this taxon, we identified two types of alpha satellite DNA consisting of 185- and 344-bp repeat units that we designated as OwlAlp1 and OwlAlp2, respectively. OwlAlp2 exhibits similarity throughout its entire sequence to the alpha satellite DNA of other New World monkeys. The chromosomal locations of the two types of sequence are markedly distinct: OwlAlp1 was observed at the centromeric constrictions, whereas OwlAlp2 was found in the pericentric regions. From these results, we inferred that OwlAlp1 was derived from OwlAlp2 and rapidly replaced OwlAlp2 as the principal alpha satellite DNA on a short time scale at the speciation level. A less likely alternative explanation is also discussed.  相似文献   
2.
The sand lizard (Lacerta agilis, Lacertidae) has a chromosome number of 2n?=?38, with 17 pairs of acrocentric chromosomes, one pair of microchromosomes, a large acrocentric Z chromosome, and a micro-W chromosome. To investigate the process of karyotype evolution in L. agilis, we performed chromosome banding and fluorescent in situ hybridization for gene mapping and constructed a cytogenetic map with 86 functional genes. Chromosome banding revealed that the Z chromosome is the fifth largest chromosome. The cytogenetic map revealed homology of the L. agilis Z chromosome with chicken chromosomes 6 and 9. Comparison of the L. agilis cytogenetic map with those of four Toxicofera species with many microchromosomes (Elaphe quadrivirgata, Varanus salvator macromaculatus, Leiolepis reevesii rubritaeniata, and Anolis carolinensis) showed highly conserved linkage homology of L. agilis chromosomes (LAG) 1, 2, 3, 4, 5(Z), 7, 8, 9, and 10 with macrochromosomes and/or macrochromosome segments of the four Toxicofera species. Most of the genes located on the microchromosomes of Toxicofera were localized to LAG6, small acrocentric chromosomes (LAG11–18), and a microchromosome (LAG19) in L. agilis. These results suggest that the L. agilis karyotype resulted from frequent fusions of microchromosomes, which occurred in the ancestral karyotype of Toxicofera and led to the disappearance of microchromosomes and the appearance of many small macrochromosomes.  相似文献   
3.
Recently, we discovered that alpha satellite DNA has unique and genus-specific localizations on the chromosomes of small apes. This study describes the details of alpha satellite localization in the genera Nomascus and Hylobates and explores their usefulness in distinguishing parental genome sets in hybrids between these genera. Fluorescence in situ hybridization was used to establish diagnostic criteria of alpha satellite DNA markers in discriminating small ape genomes. In particular we established the genus specificity of alpha satellite distribution in three species of light-cheeked gibbons (Nomascus leucogenys, N. siki, and N. gabriellae) in comparison to that of Hylobates lar. Then we determined the localization of alpha satellite DNA in a hybrid individual which resulted from a cross between these two genera. In Nomascus the alpha satellite DNA blocks were located at the centromere, telomere, and four interstitial regions. In Hylobates detectable amounts of alpha satellite DNA were seen only at centromeric regions. The differences in alpha satellite DNA locations between Nomascus and Hylobates allowed us to easily distinguish the parental chromosomal sets in the genome of intergeneric hybrid individuals found in Thai and Japanese zoos. Our study illustrates how molecular cytogenetic markers can serve as diagnostic tools to identify the origin of individuals. These molecular tools can aid zoos, captive breeding programs and conservation efforts in managing small apes species. Discovering more information on alpha satellite distribution is also an opportunity to examine phylogenetic and evolutionary questions that are still controversial in small apes.  相似文献   
4.
Based on molecular phylogeny of available complete mitochondrial DNA (mtDNA) genome sequences reveals that Crocodylus siamensis and C. porosus are closely related species. Yet, the sequence divergence of their mtDNA showed only a few values under conspecific level. In this study, a new haplotype (haplotype2, EF581859) of the complete mtDNA genome of Siamese crocodile (C. siamensis) was determined. The genome organization, which appeared to be highly similar to haplotype1 (DQ353946) mtDNA genome of C. siamensis, was 16,814 bp in length. However, the sequence divergence between the two genomes differed by around 7–10 and 0.7–2.1% for the haplotype1 between C. siamensis and C. porosus (AJ810453). These results were consistent with the phylogenetic relationship among the three genomes, suggesting that C. siamensis haplotype1 mtDNA genome might be the hybrid or the intraspecific variation of C. porosus. On the other hand, our specimen was found to be a true C. siamensis. Simultaneously, the seven species-specific DNA markers designed based on the distinctive site between haplotype2 mtDNA sequences of C. siamensis and haplotype1 mtDNA sequence of C. siamensisC. porosus were successfully used to distinguish C. siamensis from C. porosus. These effective markers could be used primarily for rapid and accurate species identification in population, ecology and conservation studies.  相似文献   
5.
The Hokou gecko (Gekko hokouensis: Gekkonidae, Gekkota, Squamata) has the chromosome number 2n = 38, with no microchromosomes. For molecular cytogenetic characterization of the gekkotan karyotype, we constructed a cytogenetic map for G. hokouensis, which retains the ancestral karyotype of Gekkota, with 86 functional genes, and compared it with cytogenetic maps for four Toxicofera species that have many microchromosomes (Elaphe quadrivirgata, Varanus salvator macromaculatus, Leiolepis reevesii rubritaeniata, and Anolis carolinensis) and that for a lacertid species (Lacerta agilis) with only one pair of autosomal microchromosomes. Ten pairs of G. hokouensis chromosomes [GHO1, 2, 3, Z(4), 6, 7, 8, 13, 14, and 15] showed highly conserved linkage homology with macrochromosomes and/or macrochromosome arms of the four Toxicofera species and corresponded to eight L. agilis macrochromosomes (LAG). However, GHO5, GHO9, GHO10, GHO11, and LAG6 were composed of chromosome segments that have a homology with Toxicofera microchromosomes, and no homology was found in the chromosomes between G. hokouensis and L. agilis. These results suggest that repeated fusions of microchromosomes may have occurred independently in each lineage of Gekkota and Lacertidae, leading to the disappearance of microchromosomes and appearance of small-sized macrochromosomes.  相似文献   
6.
7.
8.
Telomeres comprise tandem repeated DNA sequences that protect the ends of chromosomes from deterioration or fusion with neighboring chromosomes, and their lengths might vary with sex and age. Here, age‐ and sex‐related telomere lengths in male and female captive Siamese cobras (Naja kaouthia) were investigated using quantitative real‐time polymerase chain reaction based on cross‐sectional data. A negative correlation was shown between telomere length and body size in males but not in females. Age‐related sex differences were also recorded. Juvenile female snakes have shorter telomeres relative to males at up to 5 years of age, while body size also rapidly increases during this period. This suggests that an accelerated increase in telomere length of female cobra results from sex hormone stimulation to telomerase activity, reflecting sexually dimorphic phenotypic traits. This might also result from amplification of telomeric repeats on sex chromosomes. By contrast, female Siamese cobras older than 5 years had longer telomeres than males. Diverse sex hormone levels and oxidative stress parameters between sexes may affect telomere length.  相似文献   
9.

Nipah virus (NiV) is a zoonotic virus that can pose a serious threat to human and livestock health. Old-world fruit bats (Pteropus spp.) are the natural reservoir hosts for NiV, and Pteropus lylei, Lyle’s flying fox, is an important host of NiV in mainland Southeast Asia. NiV can be transmitted from bats to humans directly via bat-contaminated foods (i.e., date palm sap or fruit) or indirectly via livestock or other intermediate animal hosts. Here we construct risk maps for NiV spillover and transmission by combining ecological niche models for the P. lylei bat reservoir with other spatial data related to direct or indirect NiV transmission (livestock density, foodborne sources including fruit production, and human population). We predict the current and future (2050 and 2070) distribution of P. lylei across Thailand, Cambodia, and Vietnam. Our best-fit model predicted that central and western regions of Thailand and small areas in Cambodia are currently the most suitable habitats for P. lylei. However, due to climate change, the species range is predicted to expand to include lower northern, northeastern, eastern, and upper southern Thailand and almost all of Cambodia and lower southern Vietnam. This expansion will create additional risk areas for human infection from P. lylei in Thailand. Our combined predictive risk maps showed that central Thailand, inhabited by 2.3 million people, is considered highly suitable for the zoonotic transmission of NiV from P. lylei. These current and future NiV transmission risk maps can be used to prioritize sites for active virus surveillance and developing awareness and prevention programs to reduce the risk of NiV spillover and spread in Thailand.

  相似文献   
10.
Coconuts (Cocos nucifera L.) are divided by the height into tall and dwarf types. In many plants the short phenotype was emerged by mutation of the GA20ox gene encoding the enzyme involved in gibberellin (GA) biosynthesis. Two CnGA20ox genes, CnGA20ox1 and CnGA20ox2, were cloned from tall and dwarf types coconut. The sequences, gene structures and expressions were compared. The structure of each gene comprised three exons and two introns. The CnGA20ox1 and CnGA20ox2 genes consisted of the coding region of 1110 and 1131 bp, encoding proteins of 369 and 376 amino acids, respectively. Their amino acid sequences are highly homologous to GA20ox1 and GA20ox2 genes of Elaeis guineensis, but only 57% homologous to each other. However, the characteristic amino acids two histidines and one aspartic acid which are the two iron (Fe2+) binding residues, and arginine and serine which are the substrate binding residues of the dioxygenase enzyme in the 20G-FeII_Oxy domain involved in GA biosynthesis, were found in the active site of both enzymes. The evolutionary relationship of their proteins revealed three clusters in vascular plants, with two subgroups in dicots and three subgroups in monocots. This result confirmed that CnGA20ox was present as multi-copy genes, and at least two groups CnGA20ox1 and CnGA20ox2 were found in coconut. The nucleotide sequences of CnGA20ox1 gene in both coconut types were identical but its expression was about three folds higher in the leaves of tall coconut than in those of dwarf type which was in good agreement with their height. In contrast, the nucleotide sequences of CnGA20ox2 gene in the two coconut types were different, but the expression of CnGA20ox2 gene could not be detected in either coconut type. The promoter region of CnGA20ox1 gene was cloned, and the core promoter sequences and various cis-elements were found. The CnGA20ox1 gene should be responsible for the height in coconut, which is different from other plants because no mutation was present in CnGA20ox1 gene of dwarf type coconut.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号