首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   12篇
  2023年   1篇
  2021年   13篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   6篇
  2013年   4篇
  2012年   11篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   7篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1979年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
1.
2.
We describe a case of an acquired subglottic cyst presented with persistent stridor and voice hoarsening in a baby diagnosed with Williams–Beuren syndrome that was born premature and required intubation during neonatal period. We also comment on whether this is a coincidence or there can be an association between impaired elastogenesis, a feature of patients with the syndrome and the formation of a subglottic cyst.  相似文献   
3.
In the bacterial type II fatty acid synthase system, beta-ketoacyl-acyl carrier protein (ACP) synthase III (FabH) catalyzes the condensation of acetyl-CoA with malonyl-ACP. We have identified, expressed, and characterized the Streptococcus pneumoniae homologue of Escherichia coli FabH. S. pneumoniae FabH is approximately 41, 39, and 38% identical in amino acid sequence to Bacillus subtilis, E. coli, and Hemophilus influenzae FabH, respectively. The His-Asn-Cys catalytic triad present in other FabH molecules is conserved in S. pneumoniae FabH. The apparent K(m) values for acetyl-CoA and malonyl-ACP were determined to be 40.3 and 18.6 microm, respectively. Purified S. pneumoniae FabH preferentially utilized straight short-chain CoA primers. Similar to E. coli FabH, S. pneumoniae FabH was weakly inhibited by thiolactomycin. In contrast, inhibition of S. pneumoniae FabH by the newly developed compound SB418011 was very potent, with an IC(50) value of 0.016 microm. SB418011 also inhibited E. coli and H. influenzae FabH with IC(50) values of 1.2 and 0.59 microm, respectively. The availability of purified and characterized S. pneumoniae FabH will greatly aid in structural studies of this class of essential bacterial enzymes and facilitate the identification of small molecule inhibitors of type II fatty acid synthase with the potential to be novel and potent antibacterial agents active against pathogenic bacteria.  相似文献   
4.
Contamination of habitats with heavy metals has become a worldwide problem. We describe herein the analysis of lake sediment contaminated with high concentrations of copper as a consequence of mine milling disposal over a 100-year period. Copper concentrations in the sediment were found to vary with depth and ranged from 200 to 5500 ppm. Analysis of the microbial community with T-RFLP identified a minimum of 20 operational taxonomic units (OTU). T-RFLP analysis along a depth profile detected as many as nine shared OTUs across 15 centimeters, suggesting a conservation of community structure over this range. Only two genera, Arthrobacter and Ralstonia, were detected among 50 aerobic copper-resistant isolates cultivated on R2A, one of which (Ralstonia sp.) was characterized by the sequestration of copper, identified by electron diffraction scanning, in growing colonies. Scanning electron microscopy showed changes to the outer envelope of the cells when grown in the presence of copper. The copper-resistant Ralstonia isolates were also resistant to Ni, Cd, and Zn, showing two patterns of phenotypic resistant to these three metals in which either resistance to Zn or Ni was expressed in an isolate but never both.  相似文献   
5.
Bacterial beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III, also called FabH) catalyzes the condensation and transacylation of acetyl-CoA with malonyl-ACP. In order to understand the mode of enzyme/substrate interaction and design small molecule inhibitors, we have expressed, purified, and crystallized a selenomethionyl-derivative of E. coli KAS III. Several lines of evidence confirmed that purified selenomethionyl KAS III was homogenous, stably folded, and enzymatically active. Dynamic light scattering, size exclusion chromatography, and mass spectrometry results indicated that selenomethionyl KAS III is a noncovalent homodimer. Diffraction quality crystals of selenomethionyl KAS III/acetyl-CoA complex, which grew overnight to a size of 0.2 mm(3), belonged to the tetragonal space group P4(1)2(1)2.  相似文献   
6.
Genome sequencing has revealed that horizontal gene transfer (HGT) is a major evolutionary process in bacteria. Although it is generally assumed that closely related organisms engage in genetic exchange more frequently than distantly related ones, the frequency of HGT among distantly related organisms and the effect of ecological relatedness on the frequency has not been rigorously assessed. Here, we devised a novel bioinformatic pipeline, which minimized the effect of over-representation of specific taxa in the available databases and other limitations of homology-based approaches by analyzing genomes in standardized triplets, to quantify gene exchange between bacterial genomes representing different phyla. Our analysis revealed the existence of networks of genetic exchange between organisms with overlapping ecological niches, with mesophilic anaerobic organisms showing the highest frequency of exchange and engaging in HGT twice as frequently as their aerobic counterparts. Examination of individual cases suggested that inter-phylum HGT is more pronounced than previously thought, affecting up to ∼16% of the total genes and ∼35% of the metabolic genes in some genomes (conservative estimation). In contrast, ribosomal and other universal protein-coding genes were subjected to HGT at least 150 times less frequently than genes encoding the most promiscuous metabolic functions (for example, various dehydrogenases and ABC transport systems), suggesting that the species tree based on the former genes may be reliable. These results indicated that the metabolic diversity of microbial communities within most habitats has been largely assembled from preexisting genetic diversity through HGT and that HGT accounts for the functional redundancy among phyla.  相似文献   
7.
Adaptive laboratory evolution has proven highly effective for obtaining microorganisms with enhanced capabilities. Yet, this method is inherently restricted to the traits that are positively linked to cell fitness, such as nutrient utilization. Here, we introduce coevolution of obligatory mutualistic communities for improving secretion of fitness‐costly metabolites through natural selection. In this strategy, metabolic cross‐feeding connects secretion of the target metabolite, despite its cost to the secretor, to the survival and proliferation of the entire community. We thus co‐evolved wild‐type lactic acid bacteria and engineered auxotrophic Saccharomyces cerevisiae in a synthetic growth medium leading to bacterial isolates with enhanced secretion of two B‐group vitamins, viz., riboflavin and folate. The increased production was specific to the targeted vitamin, and evident also in milk, a more complex nutrient environment that naturally contains vitamins. Genomic, proteomic and metabolomic analyses of the evolved lactic acid bacteria, in combination with flux balance analysis, showed altered metabolic regulation towards increased supply of the vitamin precursors. Together, our findings demonstrate how microbial metabolism adapts to mutualistic lifestyle through enhanced metabolite exchange.  相似文献   
8.
9.
High‐protein feeding acutely lowers postprandial glucose concentration compared to low‐protein feeding, despite a dichotomous rise of circulating glucagon levels. The physiological role of this glucagon rise has been largely overlooked. We here first report that glucagon signalling in the dorsal vagal complex (DVC) of the brain is sufficient to lower glucose production by activating a Gcgr–PKAERK–KATP channel signalling cascade in the DVC of rats in vivo. We further demonstrate that direct blockade of DVC Gcgr signalling negates the acute ability of high‐ vs. low‐protein feeding to reduce plasma glucose concentration, indicating that the elevated circulating glucagon during high‐protein feeding acts in the brain to lower plasma glucose levels. These data revise the physiological role of glucagon and argue that brain glucagon signalling contributes to glucose homeostasis during dietary protein intake.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号