首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Wildfires are rare in the disturbance history of Hawaiian forests but may increase in prevalence due to invasive species and global climate change. We documented survival rates and adaptations facilitating persistence of native woody species following 2002–2003 wildfires in Hawaii Volcanoes National Park, Hawaii. Fires occurred during an El Niño drought and were ignited by lava flows. They burned across an environmental gradient occupied by two drier shrub-dominated communities and three mesic/wet Metrosideros forest communities. All the 19 native tree, shrub, and tree fern species demonstrated some capacity of postfire persistence. While greater than 95% of the dominant Metrosideros trees were top-killed, more than half survived fires via basal sprouting. Metrosideros trees with diameters >20 cm sprouted in lower percentages than smaller trees. At least 17 of 29 native woody species colonized the postfire environment via seedling establishment. Although the native biota possess adaptations facilitating persistence following wildfire, the presence of highly competitive invasive plants and ungulates will likely alter postfire succession.  相似文献   

2.
Although trees comprise a primary component of terrestrial species richness, the drivers and temporal scale of divergence in trees remain poorly understood. We examined the landscape-dominant tree, Metrosideros polymorpha, for variation at nine microsatellite loci across 23 populations on young Hawai''i Island, sampling each of the island''s five varieties throughout its full geographic range. For four varieties, principal coordinate analysis revealed strong clustering of populations by variety across the 10 430 km2 island, indicating partitioning of the species into multiple evolutionarily significant units. The single island-endemic form, riparian var. newellii, showed especially strong differentiation from other varieties despite occurring in sympatry with other varieties and likely evolved from a bog form on the oldest volcano, Kohala, within the past 500 000 years. Along with comparable riparian forms on other Pacific Islands, var. newellii appears to represent parallel incipient ecological speciation within Metrosideros. Greater genetic distance among the more common varieties on the oldest volcano and an inverse relationship between allelic diversity and substrate age appear consistent with colonization of Hawai''i Island by older, partially diverged varieties followed by increased hybridization among varieties on younger volcanoes. This study demonstrates that broad population-level sampling is required to uncover patterns of diversification within a ubiquitous and long-lived tree species. Hawaiian Metrosideros appears to be a case of incipient radiation in trees and thus should be useful for studies of divergence and the evolution of reproductive isolating barriers at the early stages of speciation.  相似文献   

3.
1. Sympatric flower visitor species often partition nectar and pollen and thus affect each other's foraging pattern. Consequently, their pollination service may also be influenced by the presence of other flower visiting species. Ants are solely interested in nectar and frequent flower visitors of some plant species but usually provide no pollination service. Obligate flower visitors such as bees depend on both nectar and pollen and are often more effective pollinators. 2. In Hawaii, we studied the complex interactions between flowers of the endemic tree Metrosideros polymorpha (Myrtaceae) and both, endemic and introduced flower‐visiting insects. The former main‐pollinators of M. polymorpha were birds, which, however, became rare. We evaluated the pollinator effectiveness of endemic and invasive bees and whether it is affected by the type of resource collected and the presence of ants on flowers. 3. Ants were dominant nectar‐consumers that mostly depleted the nectar of visited inflorescences. Accordingly, the visitation frequency, duration, and consequently the pollinator effectiveness of nectar‐foraging honeybees (Apis mellifera) strongly decreased on ant‐visited flowers, whereas pollen‐collecting bees remained largely unaffected by ants. Overall, endemic bees (Hylaeus spp.) were ineffective pollinators. 4. The average net effect of ants on pollination of M. polymorpha was neutral, corresponding to a similar fruit set of ant‐visited and ant‐free inflorescences. 5. Our results suggest that invasive social hymenopterans that often have negative impacts on the Hawaiian flora and fauna may occasionally provide neutral (ants) or even beneficial net effects (honeybees), especially in the absence of native birds.  相似文献   

4.
The tremendous diversity of endemic Hawaiian crickets is thought to have originated primarily through intraisland radiations, in contrast to an interisland mode of diversification in the native Hawaiian Drosophila. The Hawaiian cricket genus Laupala (family Gryllidae) is one of several native genera of flightless crickets found in rain-forest habitat across the Hawaiian archipelago. I examined the phylogenetic relationships among mitochondrial DNA (mtDNA) sequences sampled from 17 species of Laupala, including the 12S ribosomal RNA (rRNA), transfer RNA (RNA)val and 16S rRNA regions. The distribution of mtDNA variants suggests that species within Laupala are endemic to single islands. The phylogenetic estimate produced from both maximum likelihood and maximum parsimony supports the hypothesis that speciation in Laupala occurred mainly within islands. The inferred biogeographical history suggests that diversification in Laupala began on Kauai, the oldest rain-forested Hawaiian island. Subsequently, colonization to younger islands in the archipelago resulted in a radiation of considerable phylogenetic diversity. Phylogenetic patterns in mtDNA are not congruent with prior systematic or taxonomic hypotheses. Hypotheses that may explain the conflict between the phylogenetic patterns of mtDNA variation and the species taxonomy are discussed.  相似文献   

5.
The primary successional sere of a warm-temperate forest was inferred from an age sequence of four basaltic volcanic substrates (16-, 37- and 125-yr-old lava flows, and volcanic ejecta older than 800 years) at several altitudes (ranging from 30 to 550 m) on Miyake-jima Island. The DCA analysis of species composition indicated that the vegetation is patterned by substrate age and altitude. The vegetation successionally changed fromAlnus sieboldiana shrub, toMachilus thunbergii andPrunus speciosa forest, toCastanopsis sieboldii forest at all altitudes. The rate of succession seems to be slower at higher altitudes. The above-ground biomass was 20 kg/m2 (160 m a.s.l.) and 12 kg/m2 (300 m a.s.l.) on the 125-yr-old lava flow, and 54 kg/m2 (100 m a.s.l.) and 16 kg/m2 (350 m a.s.l.) on the old ejecta. However, the large difference of above-ground biomass between low versus high altitudes on the old ejecta might not only reflect climatic differences but also past human disturbances at the higher altitude. In spite of the colder climate of Miyake-jima the rate of above-ground biomass accumulation here was considerably faster than that of a Hawaiian montane tropical evergreen forest on the same basaltic lava substrate. We suggest that the faster above-ground biomass development is due to the facilitation effects of N-fixation byAlnus. The inorganic N soil concentration was extremely high on the 37- and 125-yr-old lava flows whereAlnus was dominant. The foliar N concentration inAlnus was 2% irrespective of substrate age. The deposition of N fromAlnus via litterfall would decrease the soil C/N ratio, which in turn facilitates net soil N mineralization and consequently provides an ample supply of inorganic N to plants. N limitation on vegetation development, which is prevalent during the early stage of succession on volcanic lava flows or similar substrates elsewhere, is thus alleviated.  相似文献   

6.
Wolbachia is a genus of parasitic alphaproteobacteria found in arthropods and nematodes, and represents on of the most common, widespread endosymbionts known. Wolbachia affects a variety of reproductive functions in its host (e.g., male killing, cytoplasmic incompatibility, parthenogenesis), which have the potential to dramatically impact host evolution and species formation. Here, we present the first broad-scale study to screen natural populations of native Hawaiian insects for Wolbachia, focusing on the endemic Diptera. Results indicate that Wolbachia infects native Hawaiian taxa, with alleles spanning phylogenetic supergroups, A and B. The overall frequency of Wolbachia incidene in Hawaiian insects was 14%. The incidence of infection in native Hawaiian Diptera was 11% for individuals and 12% for all species screened. Wolbachia was not detected in two large, widespread Hawaiian dipteran families—Dolichopodidae (44 spp screened) and Limoniidae (12 spp screened). Incidence of infection within endemic Hawaiian lineages that carry Wolbachia was 18% in Drosophilidae species, 25% in Caliphoridae species, > 90% in Nesophrosyne species, 20% in Drosophila dasycnemia and 100% in Nesophrosyne craterigena. Twenty unique alleles were recovered in this study, of which 18 are newly recorded. Screening of endemic populations of D. dasycnemia across Hawaii Island revealed 4 unique alleles. Phylogenetic relationships and allele diversity provide evidence for horizontal transfer of Wolbachia among Hawaiian arthropod lineages.  相似文献   

7.
Nine species of rust fungi (Uredinales) were found during a 1-day field study in an Acacia koa–Metrosideros polymorpha woodland in Volcanoes National Park on Big Island, Hawaii. Two species, both found on Acacia koa, are native (endemic) rusts whereas 7 species are nonnative on nonnative hosts, highlighting the high proportion of introduced species in the Hawaiian flora even in more or less natural habitats. One species, Uromyces linearis on Panicum repens, constitutes the first record of this rust for the Hawaiian archipelago, bringing the total to 93 species on the islands, 70 (75.3%) of which are introduced. The species records are annotated with emphasis on the geographic origin of each taxon. In addition, the study has led to the molecular reevaluation of the genus Racospermyces, indicating that it is synonymous with Endoraecium, and six new combinations are proposed for the species previously placed in Racospermyces. The high number of introduced species in Hawaii coupled with the paucity of native species when compared to other global regions is discussed.  相似文献   

8.
《Acta Oecologica》2000,21(3):193-201
The aim of this research is to reconstruct the invasion history of sites by using core sampling and analysing the installation date of tree species. A total of 107 sample sites, abandoned since 0 to 45 years ago and distributed in eight valleys of central Corsica, were studied. Results show a high (r2 = 0.86 P < 0.0001) correlation between the abandonment date derived from historic aerial photographs and the age of the oldest woody specimen in the site. For recent abandonment periods, the oldest woody species present in sample plots were grazing tolerant shrubs (short-lived species). When the abandonment period exceeded 20 years, the oldest species in sample plots were long-lived tree species. The use of category (short or long-lived species) and age of oldest woody species of sites allow to create a quantitative estimation of abandonment period available without old aerial photographs. This new chronological variable is relevant for studying intermediate (one to several decades) periods of abandonment in secondary succession processes. The use of such variable allows the analysis of succession of vegetal communities or the establishment of the dynamical response curves of species.  相似文献   

9.
An illustrated identification system is presented to 99 species and 49 genera in three families recorded from the Hawaiian Islands in the Thysanoptera suborder Terebrantia. Only seven (possibly eight) of these species are considered endemic, the remainder being adventive to these islands. The only previous study of Hawaiian Thysanoptera, by Zimmerman in 1948, included 47 Terebrantia species in 21 genera.  相似文献   

10.
At present, approximately 187 genera and over 1300 species of Microsporidia have been described, among which almost half infect aquatic species and approximately 50 genera potentially infect aquatic arthropods. Lake Baikal is the deepest and one of the oldest lakes in the world, and it has a rich endemic fauna with a predominance of arthropods. Among the arthropods living in this lake, amphipods (Crustacea) are the most dominant group and are represented by more than 350 endemic species. Baikalian amphipods inhabit almost all depths and all types of substrates. The age and geographical isolation of this group creates excellent opportunities for studying the diversity, evolution and genetics of host-parasite relationships. However, despite more than 150 years of study, data investigating the microsporidia of Lake Baikal remain incomplete. In this study, we used molecular genetic analyses to detect microsporidia in the hemolymph of several endemic species of amphipods from Lake Baikal. We provide the first evidence that microsporidian species belonging to three genera (Microsporidium, Dictyocoela and Nosema) are present in the hemolymph of Baikalian endemic amphipods. In the hemolymph of Eulimnogammarus verrucosus, we detected SSU rDNA of microsporidia belonging to the genus Nozema. In the hemolymph of Pallasea cancellous, we found the DNA of Microsporidium sp. similar to that in other Baikalian endemic amphipods; Dictyocoela sp. was found in the hemolymph of Eulimnogammarus marituji and Acanthogammarus lappaceus longispinus.  相似文献   

11.
Abstract. Hawaiian ecosystems are prone to invasion by alien plant species. I compared the seed rain, seed bank, and vegetation of a native Hawaiian forest to examine the potential role that seed ecology plays in allowing alien species to invade native forest. Absolute cover of seed plants in the forest was 126 %, annual seed rain was 5 713 seeds m-2 yr-1, and the mean density of seedlings emerging from the seed bank averaged across four seasons was 1 020/m2. The endemic tree Metrosideros polymorpha was the most abundant species in the vegetation, seed rain and winter seed bank. Overall, native seed plants comprised 95 % of the relative cover in the vegetation and 99 % of the seeds in the seed rain, but alien species comprised 67 % of the seeds in the seed bank. Alien species tended to form persistent seed banks while native species formed transient or pseudo-persistent seed banks. Dominance of the seed bank by alien species with persistent seed banks suggests that aliens are favorably placed to increase in abundance in the vegetation if the forest is disturbed.  相似文献   

12.
The Miocene Steinheim Basin in SW Germany is an ancient (long-lived) palaeo-lake that has existed over some hundreds of thousands of years. It is an iconic fossil site, because the historically oldest phylogenetic tree of extinct organisms was based on specimens described from this locality. Today the basin contains 30–40 m thickness of lake sediments with planorbid snails of the genus Gyraulus occurring in rock-forming quantities. The shells are morphologically highly disparate with forms ranging from the tiny, planispiral founder species Gyraulus kleini, to fragile corkscrew-like uncoiled forms and to large trochiform morphs with thick shells. In total, this presumably monophyletic species flock contains 17 species distributed in time and space, all of which are endemic, except for the founder species. Up to nine of them occur in a single sedimentary level and are inferred to have lived together. Such an extreme rate of endemism makes fossil Lake Steinheim special among extant and fossil lakes. This review article summarises and discusses the species concept(s), indications for endemism, speciation processes, the phylogenetic concept(s) and factors controlling evolution. It also provides directions for future research.  相似文献   

13.
Survey data over the last 100 years indicate that populations of the endemic Hawaiian leafroller moth, Omiodes continuatalis (Wallengren) (Lepidoptera: Crambidae), have declined, and the species is extirpated from large portions of its original range. Declines have been attributed largely to the invasion of non-native parasitoid species into Hawaiian ecosystems. To quantify changes in O. continuatalis distribution, we applied the maximum entropy modeling approach using Maxent. The model referenced historical (1892–1967) and current (2004–2008) survey data, to create predictive habitat suitability maps which illustrate the probability of occurrence of O. continuatalis based on historical data as contrasted with recent survey results. Probability of occurrence is predicted based on the association of biotic (vegetation) and abiotic (proxy of precipitation, proxy of temperature, elevation) environmental factors with 141 recent and historic survey locations, 38 of which O. continuatalis were collected from. Models built from the historical and recent surveys suggest habitat suitable for O. continuatalis has changed significantly over time, decreasing both in quantity and quality. We reference these data to examine the potential effects of non-native parasitoids as a factor in changing habitat suitability and range contraction for O. continuatalis. Synthesis and applications: Our results suggest that the range of O. continuatalis, an endemic Hawaiian species of conservation concern, has shrunk as its environment has degraded. Although few range shifts have been previously demonstrated in insects, such contractions caused by pressure from introduced species may be important factors in insect extinctions.  相似文献   

14.
Globally, introductions of alien species are increasingly common, with invasive predators potentially having detrimental effects via predation on native species. However, native prey may avoid predation by adopting new behaviors. To determine whether invasive fish populations consume endemic shrimp in invaded Hawaiian anchialine habitats or if adopted patterns of diel migration prevents predation as previously hypothesized, a total of 183 invasive poeciliids (158 Gambusia affinis and 25 Poecilia reticulata) were collected for gut content analyses from four anchialine sites during wet and dry seasons on the islands of Hawai‘i and Maui. Predation on shrimp was not detected in habitats where they retreat exclusively into the underlying aquifer diurnally and only emerge nocturnally. However, low levels of predation were detected (7/65 fishes, only by Gambusia affinis) at Waianapanapa Cave, Maui, where shrimp retreat into both the aquifer and a cave during the day. Thus, adopted behavioral responses to invasive fishes generally, though not universally, prevent predation on endemic Hawaiian anchialine shrimps. However, non-consumptive effects resulting from behavioral modification of shrimps may have appreciable impacts on the Hawaiian anchialine ecosystem and warrant further study.  相似文献   

15.
Most of the large Drosophila species of Hawaii are single-island endemics. Chromosomal sequences show that species at the new end of the archipelago have been derived stepwise from ancestral populations on older islands. The oldest high island has an endemic species with sequences that match some in the Nearctic-Palearctic robusta species group. Colonization from a continent by long-distance dispersal seems a likely origin for the Hawaiian drosophilids. Telmatogeton, a worldwide genus of marine midges, has five Hawaiian species inhabiting freshwater streams. Chromosomal sequences of a marine species in Hawaiian waters match the freshwater forms, indicating colonization from the ocean.  相似文献   

16.
The importance of environmental gradients in the diversification of long‐lived tree species is poorly understood. Two morphologically distinct varieties of the endemic Hawaiian tree, 'ōhi'a lehua (Metrosideros polymorpha), are the canopy dominants at alternate extremes of a successional gradient formed by the recurring disturbance of lava flows on east Hawai'i Island. The maintenance of these varieties despite hybridization may be due to disruptive selection at either end of the successional gradient. To test this hypothesis, seeds from three, replicate monotypic stands of each variety on east Hawai'i Island were germinated and the resulting seedlings grown under four combinations of light and nitrogen levels in a greenhouse, and at early‐ and late‐successional field sites. Growth and survivorship measures revealed differential fitness of these varieties in high‐ and low‐light environments in the greenhouse with corresponding differential fitness in early‐ and late‐successional field sites. Unique light‐by‐nitrogen interaction effects on growth were observed in each variety, and only the late‐successional variety appeared to be nitrogen limited. These two varieties exhibit the classic plant life‐history trade‐off between fast growth in high light and high survivorship in shade, but notably within a single tree species. These findings strongly implicate a role for Hawaii's striking environmental heterogeneity in the emergence of at least two endemic forms of this woody genus.  相似文献   

17.
Two transposable elements have been isolated from the Hawaiian Drosophila, the Uhu and LOA elements. The Uhu element has been shown to be present in a group of closely related species, the planitibia subgroup of the picture-winged Drosophila. This study examines the distribution of the Uhu element in several other subgroups of the picture-winged Drosophila, as well as the modified-mouthparts and antopocerus groups of the Hawaiian Drosophila. The LOA element has a much more limited distribution, having only been found in representatives of the planitibia and grimshawi subgroups of the picture-winged Drosophila. For both the Uhu and LOA elements there is an inverse correlation between the copy number of the element and the age of the island on which the species is endemic, i.e., species endemic to the Island of Hawaii, the youngest island, have the highest copy number, while species endemic to Kauai, the oldest island, have the lowest copy number of the element. The correlation suggests there is a relationship between speciation and the activity of transposable elements. Received: 6 January 1997; in revised form: 6 August 1997 / Accepted: 21 August 1997  相似文献   

18.
We measured nitrogenase activity (acetylene reduction) of asymbiotic, heterotrophic, nitrogen-fixing bacteria on leaf litter from the tree Metrosideros polymorpha collected from six sites on the Hawaiian archipelago. At all sites M. polymorpha was the dominant tree, and its litter was the most abundant on the forest floor. The sites spanned a soil chronosequence of 300 to 4.1 million y. We estimated potential nitrogen fixation associated with this leaf litter to be highest at the youngest site (1.25 kg ha-1 y-1), declining to between 0.05 and 0.22 kg ha-1 y-1 at the oldest four sites on the chronosequence. To investigate how the availability of weathered elements influences N fixation rates at different stages of soil development, we sampled M. polymorpha leaf litter from complete, factorial fertilization experiments located at the 300-y, 20,000-y and 4.1 million–y sites. At the youngest and oldest sites, nitrogenase activity on leaf litter increased significantly in the plots fertilized with phosphorus and “total” (all nutrients except N and P); no significant increases in nitrogenase activity were measured in leaf litter from treatments at the middle-aged site. The results suggest that the highest rates of N fixation are sustained during the “building” or early phase of ecosystem development when N is accumulating and inputs of geologically cycled (lithophilic) nutrients from weathering are substantial. Received 4 February 1999; accepted 29 March 2000.  相似文献   

19.
Allometric models are important for quantifying biomass and carbon storage in terrestrial ecosystems. Generalized allometry exists for tropical trees, but species‐ and site‐specific models are more accurate. We developed species‐specific models to predict aboveground biomass in two of the most ubiquitous natives in Hawaiian forests and shrublands, Metrosideros polymorpha and Dodonaea viscosa. The utility of the M. polymorpha allometry for predicting biomass across a range of sites was explored by comparing size structure (diameter at breast height vs. tree height) of the trees used to develop the models against trees from four M. polymorpha‐dominated forests along a precipitation gradient (1630–2380 mm). We also compared individual tree biomass estimated with the M. polymorpha model against existing generalized equations, and the D. viscosa model with an existing species‐specific model. Our models were highly significant and displayed minimal bias. Metrosideros polymorpha size structures from the three highest precipitation sites fell well within the 95% confidence intervals for the harvested trees, indicating that the models are applicable at these sites. However, size structure in the area with the lowest precipitation differed from those in the higher rainfall sites, emphasizing that care should be taken in applying the models too widely. Existing generalized allometry differed from the M. polymorpha model by up to 88 percent, particularly at the extremes of the data range examined, underestimating biomass in small trees and overestimating in large trees. The existing D. viscosa model underestimated biomass across all sizes by a mean of 43 percent compared to our model. The species‐specific models presented here should enable more accurate estimates of biomass and carbon sequestration in Hawaiian forests and shrublands.  相似文献   

20.
Geranium hanaense, a new species endemic to two small montane bogs (20 ha total) on northeast Haleakala, Maui, Hawaiian Islands, is described. This new species is postulated to have evolved from the high elevation xeromorphic species,G. cuneatum, in a fashion similar to that of the two other bogGeranium species. The ecology and evolution of HawaiianGeranium species, includingG. hanaense, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号