首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2009年   1篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1994年   1篇
排序方式: 共有11条查询结果,搜索用时 562 毫秒
1.
Kazanovich Y  Borisyuk R 《Bio Systems》2002,67(1-3):103-111
We describe a new solution to the problem of consecutive selection of objects in a visual scene by an oscillatory neural network with the global interaction realised through a central executive element (central oscillator). The frequency coding is used to represent greyscale images in the network. The functioning of the network is based on three main principles: (1) the synchronisation of oscillators via phase-locking, (2) adaptation of the natural frequency of the central oscillator, and (3) resonant increase of the amplitudes of the oscillators which work in-phase with the central oscillator. Examples of network simulations are presented to show the reliability of the results of consecutive selection of objects under conditions of constant and varying brightness of the objects.  相似文献   
2.
3.
DNA/RNA methylation plays an important role in lung cancer initiation and progression. Liquid biopsy makes use of cells, nucleotides and proteins released from tumor cells into body fluids to help with cancer diagnosis and prognosis. Methylation of circulating tumor DNA (ctDNA) has gained increasing attention as biomarkers for lung cancer. Here we briefly introduce the biological basis and detection method of ctDNA methylation, and review various applications of methylated DNA in body fluids in lung cancer screening, diagnosis, prognosis, monitoring and treatment prediction. We also discuss the emerging role of RNA methylation as biomarkers for cancer.  相似文献   
4.
The dynamics of activity in interactive neural populations is simulated by the networks of Wilson-Cowan oscillators. Two extreme cases of connection architectures in the networks are considered: (1) 1D and 2D regular and homogeneous grids with local connections and (2) sparse random coupling. Propagating waves in the network have been found under the stationary external input and the regime of partial synchronization has been obtained for the periodic input. It has been shown that in the case of random coupling about 60% of neural populations demonstrate oscillatory activity and some of these oscillations are synchronous. The role of different types of dynamics in information processing is discussed. In particular, we discuss the regime of partial synchronization in the context of cortical microcircuits.  相似文献   
5.
We develop and study two neural network models of perceptual alternations. Both models have a star-like architecture of connections with a central element connected to a set of peripheral elements. A particular perception is simulated in terms of partial synchronization between the central element and some sub-group of peripheral elements. The first model is constructed from phase oscillators and the mechanism of perceptual alternations is based on chaotic intermittency under fixed parameter values. Similar to experimental evidence, the distribution of times between perceptual alternations is represented by the gamma distribution. The second model is built of spiking neurons of the Hodgkin–Huxley type. The mechanism of perceptual alternations is based on plasticity of inhibitory synapses which increases the inhibition from the central unit to the neural assembly representing the current percept. As a result another perception is formed. Simulations show that the second model is in good agreement with behavioural data on switching times between percepts of ambiguous figures and with experimental results on binocular rivalry of two and four percepts. This article is part of a special issue on Neuronal Dynamics of Sensory Coding. This special issue is in honour of Professor Pepe Segundo who is one of the pioneers in the study of neural coding. Pepe has been an active participant in many Neural Coding Workshops sharing his great knowledge and experience of research in this field. I (R. Borisyuk) was very happy to meet Pepe for the first time in Prague when attending the first Neural Coding Workshop in 1995. From that time we regularly met at Neural Coding Workshops and these meetings have always been very stimulating and fruitful for my research. Remarkably, the first paper I studied at the beginning of my scientific career was a seminal paper by Moore et al. (1970). For me, this paper provided a great opportunity to learn the basic statistical techniques for the analysis of multiple spike trains and neural coding. According to the Institute of Scientific Information, this paper has been cited 380 times! This exciting paper has inspired my research into the synaptic and functional connectivity of neural circuits derived from spike-train recordings (Borisyuk et al. 1985; Stuart et al. 2005) and guided my search for new ideas on neural coding.  相似文献   
6.
A new mechanism to control attention focus formation and switching in the model of selective attention is suggested and studied. The model is based on an oscillatory neural network (ONN) with the star-like architecture and phase shifts in connections between oscillators. Attention is modelled as a dynamical mode of partial synchronisation between a particular subgroup of oscillators and the central oscillator (CO). A new theoretical method to study full and partial synchronisation in the system is presented. Equations for the frequency of synchronisation are derived which allow the programming of the dynamical behaviour of the system depending on the parameters. In particular, we show that phase shifts in connections between oscillators provide an efficient mechanism of attention control.  相似文献   
7.
We present an oscillatory network of conductance based spiking neurons of Hodgkin–Huxley type as a model of memory storage and retrieval of sequences of events (or objects). The model is inspired by psychological and neurobiological evidence on sequential memories. The building block of the model is an oscillatory module which contains excitatory and inhibitory neurons with all-to-all connections. The connection architecture comprises two layers. A lower layer represents consecutive events during their storage and recall. This layer is composed of oscillatory modules. Plastic excitatory connections between the modules are implemented using an STDP type learning rule for sequential storage. Excitatory neurons in the upper layer project star-like modifiable connections toward the excitatory lower layer neurons. These neurons in the upper layer are used to tag sequences of events represented in the lower layer. Computer simulations demonstrate good performance of the model including difficult cases when different sequences contain overlapping events. We show that the model with STDP type or anti-STDP type learning rules can be applied for the simulation of forward and backward replay of neural spikes respectively.  相似文献   
8.
A neural network model is considered which is designed as a system of phase oscillators and contains the central oscillator and peripheral oscillators which interact via the central oscillator. The regime of partial synchronization was studied when current frequencies of the central oscillator and one group of peripheral oscillators are near to each other while current frequencies of other peripheral oscillators are far from being synchronized with the central oscillator. Approximation formulas for the average frequency of the central oscillator in the regime of partial synchronization are derived, and results of computation experiments are presented which characterize the accuracy of the approximation.  相似文献   
9.
A model of sparse distributed memory is developed that is based on phase relations between the incoming signals and an oscillatory mechanism for information processing. This includes phase-frequency encoding of input information, natural frequency adaptation among the network oscillators for storage of input signals, and a resonance amplification mechanism that responds to familiar stimuli. Simulations of this model show different types of dynamics in response to new and familiar stimuli. The application of the model to hippocampal working memory is discussed.  相似文献   
10.
The influence of sex of broilers and dietary phosphorus (P) level on energy utilization and apparent ileal digestibility of N, P and phytate-P were investigated. The AMEN was determined using 3- and 6-week old broilers, while the apparent ileal digestibility were determined only with 6-week old birds. Sex of broilers had no effect on the AMEN values determined during week 3. During week 6, the AMEN values for male broilers were higher (P?0.01) than those for the females. An interaction (P?0.05) between sex and dietary P level was also observed. AMEN values determined with male broilers were lower in the adequate-P diet compared to those in the low-P diet, whereas no effect of P level was observed in females. Female broilers tended (P?0.10) to have a higher ileal N digestibility than the males, but a significant (P?0.01) sex ×?P level interaction was observed. Males receiving the adequate-P diet had a lower N digestibility than those receiving the low-P diet, whereas the opposite was true in the females. Ileal phytate P degradation in males was higher than in females (0.282 vs. 0.234), but the differences were not significant. Increasing dietary P level increased ileal P digestibility in both the males and females, but the improvements were greater in the females, as indicated by a significant sex × P level interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号