首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2015年   3篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Kashian  D.M.  Barnes  B.V.  Walker  W.S. 《Plant Ecology》2003,166(1):75-91
A combination of field and tabular methods and multivariate analyses were used to develop groups of ground flora species (i.e., ecological species groups) that characterize and distinguish highly disturbed, landform-level ecosystems dominated by jack pine in northern Lower Michigan. The endangered Kirtland's warbler formerly or currently occupied the large glacial landforms for which species groups were developed. Eight such ecological species groups were created using 31 woody and herbaceous species sampled in 144 plots within a 20,000 km2 geographic region of uniform climate and regional physiography. The groups were initially constructed using subjective, observation-based groupings of species with similar presence and abundance along soil moisture and fertility gradients. Species groups were corroborated using TWINSPAN and detrended correspondence analysis, and the environmental conditions indicated by each were described and contrasted based upon field observations and canonical correspondence analysis. Two of the eight species groups indicated very dry, infertile sites, and one was indicative of a very broad range of sites dominated by jack pine. The remaining five groups reflected a relatively gentle environmental gradient within the set of ecosystems we sampled, indicating small differences along a soil moisture gradient and less so along a soil fertility and light availability gradient. The groups were applied successfully for the majority of an area that had been repeatedly logged and/or burned for at least 120 years. In addition, the groups were successful when tested on sites with highly disturbed upper soil strata furrowed for the establishment of plantations between the 1960s and 1980s. Within the boundaries of the regional ecosystems for which they were developed, ecological species groups reflect the integrated effects of multiple site factors that control the height growth rates of jack pine trees that, in turn, determine the duration of Kirtland's warbler occupancy. While usually applied at the scale of ecosystem types, our results demonstrate that ecological species groups may also provide the ecological basis for distinguishing ecosystems at broader scales. When examined simultaneously in the field with physiography, microclimate, and soil factors, the groups are therefore useful in identifying and classifying ecosystem units at the scale of landforms, the appropriate scale of management for the Kirtland's warbler.  相似文献   
2.
Forest insects and pathogens are major disturbance agents that have affected millions of hectares in North America in recent decades, implying significant impacts to the carbon (C) cycle. Here, we review and synthesize published studies of the effects of biotic disturbances on forest C cycling in the United States and Canada. Primary productivity in stands was reduced, sometimes considerably, immediately following insect or pathogen attack. After repeated growth reductions caused by some insects or pathogens or a single infestation by some bark beetle species, tree mortality occurred, altering productivity and decomposition. In the years following disturbance, primary productivity in some cases increased rapidly as a result of enhanced growth by surviving vegetation, and in other cases increased slowly because of lower forest regrowth. In the decades following tree mortality, decomposition increased as a result of the large amount of dead organic matter. Net ecosystem productivity decreased immediately following attack, with some studies reporting a switch to a C source to the atmosphere, and increased afterward as the forest regrew and dead organic matter decomposed. Large variability in C cycle responses arose from several factors, including type of insect or pathogen, time since disturbance, number of trees affected, and capacity of remaining vegetation to increase growth rates following outbreak. We identified significant knowledge gaps, including limited understanding of carbon cycle impacts among different biotic disturbance types (particularly pathogens), their impacts at landscape and regional scales, and limited capacity to predict disturbance events and their consequences for carbon cycling. We conclude that biotic disturbances can have major impacts on forest C stocks and fluxes and can be large enough to affect regional C cycling. However, additional research is needed to reduce the uncertainties associated with quantifying biotic disturbance effects on the North American C budget.  相似文献   
3.
Causes and implications of spatial variability in postfire tree density and understory plant cover for patterns of aboveground net primary production (ANPP) and leaf area index (LAI) were examined in ninety 11-year-old lodgepole pine (Pinus contorta var. latifolia Engelm.) stands across the landscape of Yellowstone National Park (YNP), Wyoming, USA. Field studies and aerial photography were used to address three questions: (1) What is the range and spatial pattern of lodgepole pine sapling density across the burned Yellowstone landscape and what factors best explain this variability? (2) How do ANPP and LAI vary across the landscape and is their variation explained by abiotic factors, sapling density, or both? (3) What is the predicted spatial pattern of ANPP and LAI across the burned Yellowstone landscape? Stand density spanned six orders of magnitude, ranging from zero to 535,000 saplings ha?1, and it decreased with increasing elevation and with increasing distance from unburned forest (r 2?=?0.37). Postfire densities mapped from 1:30,000 aerial photography revealed that 66% of the burned area had densities less than 5000 saplings ha?1 and approximately 25% had densities greater than 10,000 saplings ha?1; stand density varied spatially in a fine-grained mosaic. New allometric equations were developed to predict aboveground biomass, ANPP, and LAI of lodgepole pine saplings and the 25 most common herbaceous and shrub species in the burned forests. These allometrics were then used with field data on sapling size, sapling density, and percent cover of graminoid, forb, and shrub species to compute stand-level ANPP and LAI. Total ANPP averaged 2.8 Mg ha?1y?1 but ranged from 0.04 to 15.12 Mg ha?1y?1. Total LAI averaged 0.80 m2 m?2 and ranged from 0.01 to 6.87 m2 m?2. Variation in ANPP and LAI was explained by both sapling density and abiotic factors (elevation and soil class) (ANOVA, r 2?=?0.80); abiotic variables explained 51%–54% of this variation. The proportion of total ANPP contributed by herbaceous plants and shrubs declined sharply with increasing sapling density (r 2?=?0.72) and increased with elevation (r 2?=?0.36). However, total herbaceous productivity was always less than 2.7 Mg ha?1 y?1, and herbaceous productivity did not compensate for tree production when trees were sparse. When extrapolated to the landscape, 68% of the burned landscape was characterized by ANPP values less than 2.0 Mg ha?1y?1, 22% by values ranging from 2 to 4 Mg ha?1y?1, and the remaining 10% by values greater than 4 Mg ha?1y?1. The spatial patterns of ANPP and LAI were less heterogeneous than patterns of sapling density but still showed fine-grained variation in rates. For some ecosystem processes, postfire spatial heterogeneity within a successional stage may be similar in magnitude to the temporal variation observed through succession.  相似文献   
4.
Long-term, landscape patterns in inorganic nitrogen (N) availability and N stocks following infrequent, stand-replacing fire are unknown but are important for interpreting the effect of disturbances on ecosystem function. Here, we present results from a replicated chronosequence study in the Greater Yellowstone Ecosystem (Wyoming, USA) directed at measuring inorganic N availability (ion-exchange resin bags) and ecosystem N pools among 77 lodgepole pine stands that varied in age and density. Inorganic N availability ranged from 0.07 to 3.20 μN bag−1 d−1 and nitrate (NO3) was, on average, 65% of total resin-sorbed N. Total ecosystem N stocks (live + detrital + soil) averaged 109.9 ± 3.0 g N m−2 (range = 63.7–185.8 g N m−2). Live N was 14%, detrital N was 29%, and soil N was 57% of total stocks. Soil NO3, total ecosystem N, live N, and detrital N generally increased with stand age, but soil N stocks decreased. Models (AICc) to predict soil N availability and N stocks included soil P, soil Ca, bulk density, and pH in addition to age (adj R 2 ranged from 0.18 to 0.53) and density was included only for live N stocks. Patterns of N stocks and N availability with density were strongest for young stands (<20 years) regenerating from extensive fire in 1988; for example, litterfall N stocks increased with density (adj R 2 = 0.86, P < 0.001) but inorganic N availability declined (adj R 2 = 0.47, P < 0.003). Across the complex Yellowstone landscape, we conclude that N stocks and N availability are best predicted by a combination of local soil characteristics in addition to factors that vary at landscape scales (stand density and age). Overall, total ecosystem N stocks were recovered quickly following stand-replacing fire, suggesting that moderate increases in fire frequency will not affect long-term landscape N storage in Greater Yellowstone. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author contributions   EAHS, MGT, and MGR conceived the study; DMK performed field research; EAHS and DMK oversaw laboratory analyses and analyzed data; EAHS wrote the paper.  相似文献   
5.
Large disturbances such as the 1988 Yellowstone fires produce considerable spatial heterogeneity in ecosystem processes across landscapes, in part by affecting vegetation structure. However, the persistence of this heterogeneity with time since disturbance, and thus the role of large disturbances in shaping the heterogeneity of ecosystem processes over large spatial and temporal scales, remains unclear. Such an inquiry requires that variability as well as mean conditions of forest structure and growth be examined if changes are to be projected for heterogeneous postdisturbance landscapes. We studied a chronosequence of unburned, mature lodgepole pine stands (stand ages ranging from 50 to 300 or more years) to examine the variability in stand density, leaf-area index (LAI), and stem growth [basal area increment (BAI), a surrogate for aboveground net primary productivity (ANPP)] with stand age, the relationships between these factors, and how these factors were related to stand and site characteristics. Variation in LAI and BAI was explained primarily by differences in stand density and age (r2=0.51 for both LAI and BAI), and both LAI and BAI were most variable in the youngest age class [coefficient of variation (CV), 38% and 41% for LAI and BAI]. The relationship between LAI or BAI and stand density was significantly weaker (r2 < 0.20) at stand ages characterized by canopy closure (50–175 years), suggesting that stand structure and production are closely linked. Thus, the spatial variability of stand production, which is initially very high following large fires in this landscape, is detectable for over a century before successional changes in forest structure greatly affect the initial postdisturbance landscape pattern of stand production. Given the recent focus on spatial heterogeneity of ecosystem processes across large landscapes, projecting changes in postdisturbance patterns of stand production has very strong significance for ecosystem science.  相似文献   
6.
7.
Daphnia are often used as test organisms to determine toxicity of chemicals found in the environment. Fecundity and mortality are the classic endpoints in such tests; however, there is increased interest in other sub-lethal endpoints. Most Daphnia reproduce by cyclic parthenogenesis, typically reproducing asexually to produce genetically identical females. Environmental cues trigger the production of males allowing for sexual reproduction. This ability to switch reproductive strategies has been increasingly used as a bioassay endpoint in screens for sub-lethal effects of contaminants. In order to optimize such test, it is necessary to know when sex is determined during Daphnia development. A previous study using the insect juvenile hormone methyl farnesoate has shown that sex determination occurred during the egg maturation period in Daphnia. Our study exposed female Daphnia magna carrying eggs and embryos at different stages of maturation, to the insecticide toxaphene to determine if the timing of sex determination is similarly influenced by a pesticide. Our results suggest that in response to toxaphene exposure sex is determined in the immature oocyte, before the final maturation cleavage, and before the developing egg is extruded into the brood chamber. Thus, sex determination is transgenerational, being determined while the egg is still immature and in the mother’s ovary.  相似文献   
8.
Management of nonindigenous species includes prevention, early detection and rapid response and control. Early detection and rapid response depend on prioritizing and monitoring sites at risk for arrival or secondary spread of nonindigenous species. Such monitoring efforts require sufficient biosecurity budgets to be effective and meet management or policy directives for reduced risk of introduction. Such consideration of risk reduction is rarely considered, however. Here, we review the concepts of acceptable level of risk (ALOR) and associated costs with respect to nonindigenous species and present a framework for aligning risk reduction priorities with available biosecurity resources. We conclude that available biosecurity resources may be insufficient to attain stated and desired risk reduction. This outcome highlights the need to consider policy and management directives when beginning a biosecurity program to determine the feasibility of risk reduction goals, given available resources.  相似文献   
9.
Toxaphene is a persistent environmental contaminant that has been shown to alter male production in Daphnia magna and to induce P-450 activity in mammals. Cytochrome P-450-mediated metabolism may lead to xenobiotic detoxification resulting in acclimation. To determine if D. magna acclimate to toxaphene via P-450 pathways, chronic and acute toxicity tests were conducted with D. magna exposed to toxaphene in the presence and absence of piperonyl butoxide (PBO), an inhibitor of cytochrome P-450 enzymes. Toxaphene exposure increased male production in acute but not chronic assays, indicating that D. magna may acclimate to chronic toxaphene exposure. Upon co-administration of toxaphene and PBO in chronic tests, D. magna exhibited a decline in growth rate, fecundity and survival. The observed toxaphene acclimation in chronic tests, along with its increased toxicity in the presence of a P-450 suppressor, suggests that P-450 enzymes may contribute to detoxification and subsequent acclimation of D. magna to chronic toxaphene exposure. Additional chronic toxicity tests indicated that toxaphene acclimation occurs between 7 and 12 days following initial exposure, at which time sex determination is no longer affected. Thus, sublethal toxaphene toxicity effects such as reproductive impairments may be detectable with acute but not chronic tests, potentially due to the upregulation of P-450 isozymes.  相似文献   
10.
Biological Invasions - Invasions are a common occurrence in many ecosystems but predicting the establishment and impacts of the invader can be difficult. Understanding how and why invasion...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号