首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   8篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   9篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1981年   2篇
  1979年   4篇
  1977年   3篇
  1976年   1篇
  1971年   1篇
  1968年   2篇
  1965年   1篇
排序方式: 共有102条查询结果,搜索用时 265 毫秒
1.
We have examined the phylogenetic distribution of two t-specific markers among representatives of various taxa belonging to the genus Mus. The centromeric TCP-1a marker (a testicular protein variant specific for all t-haplotypes so far studied) has also been apparently detected in several non-t representatives of the Mus IVA, Mus IVB, and probably M. cervicolor species. By contrast, a t-specific restriction- fragment-length polymorphism allele (RFLP) of the telomeric alpha- globin pseudogene DNA marker alpha-psi-4 was found only in animals belonging to the M. musculus-complex species either bearing genuine t- haplotypes or, like the M. m. bactrianus specimen studied here, likely to do so. This t-specific alpha-psi-4 RFLP allele was found to be as divergent from the RFLP alleles of the latter, non-t, taxonomical groups as it is from Mus 4A, Mus 4B, or M. spretus ones. These results suggest the presence of t-haplotypes and of t-specific markers in populations other than those belonging to the M. m. domesticus and M. m. musculus subspecies, implying a possible origin for t-haplotypes prior to the radiation of the most recent offshoot of the Mus genus (i.e., the spretus/domesticus divergence), some 1-3 Myr ago.   相似文献   
2.
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature.  相似文献   
3.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
4.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   
5.
The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphosphatidic acid (LPA) reduce mortality in hypoxic cardiac myocytes. S1P is also cardioprotective in both mouse and rat models of cardiac ischemia/reperfusion (I/R) injury. Although these results are consistent with prior work in other cell types, it is not known what signaling events are critical to cardioprotection, particularly with respect to ceramide and the preservation of mitochondrial function, which is essential for cardiac cell survival. Neither receptor regulation nor signaling has been studied during I/R in the heart with or without the application of S1P or LPA. The role of sphingosine kinase in I/R and in ischemic preconditioning (IPC) has not been defined, nor has the fate or function of S1P generated by this enzyme, particularly during preconditioning or I/R, been elucidated. Whether S1P infused systemically in animal models of myocardial infarction in which survival is an end-point will be hemodynamically tolerated has not been determined. If not, the substitution of agents such as the monosialoganglioside GM-1, which activates sphingosine kinase, or the development of alternative ligands for S1P receptors will be necessary.  相似文献   
6.
Lysophospholipids and the cardiovascular system   总被引:18,自引:0,他引:18  
The lysophospholipids sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) have varied effects on the cardiovascular system. S1P is necessary for normal vascular development and may play an important role in angiogenesis. These molecules may exert potentially detrimental effects. Both S1P and LPA are released from activated platelets and can in turn stimulate platelet aggregation. These thrombogenic effects would further enhance ischemia in acute coronary syndromes and myocardial infarction. LPA is a major component of the lipid core of human atherosclerotic plaques and can stimulate vascular smooth muscle proliferation. Both LPA and S1P cause cardiac myocyte hypertrophy in vitro. Beneficial effects include cardioprotection both in vitro and during ischemia/reperfusion in an ex vivo whole heart mouse model. Understanding both the acute and the chronic physiologic and pathophysiologic roles of the lysophospholipids and their cognate receptors and signaling pathways in the cardiovascular system, which are likely to be species-, tissue-, and cell-specific, may allow the development of molecules that can be targeted to stimulate or inhibit a specific function.  相似文献   
7.
Presence or absence of N-acetylneuraminic acid (Neu5Ac) can change a sialylated glycoprotein's serum half-life and possibly its function. We evaluated the linearity, sensitivity, reproducibility, and accuracy of a HPAEC/PAD method to determine its suitability for routine simultaneous analysis of Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). An effective internal standard for this analysis is 3-deoxy-d-glycero-d- galacto-2-nonulosonic acid (KDN). We investigated the effect of the Au working electrode recession and determined that linear range and sensitivity were dependent on electrode recession. Using an electrode that was 350 &mgr;m recessed from the electrode block, the minimum detection limits of Neu5Ac, KDN, and Neu5Gc were 2, 5, and 2 pmol, respectively, and were reduced to 1, 2, and 0.5 pmol using a new electrode. The response of standards was linear from 10 to 500 pmol (r2>0.99) regardless of electrode recession. When Neu5Ac, KDN, and Neu5Gc (200 pmol each) were analyzed repetitively for 48 h, area RSDs were <3%. Reproducibility was unaffected when injections of glycoprotein neuraminidase and acid digestions were interspersed with standard injections. Area RSDs of Neu5Ac and Neu5Gc improved when the internal standard was used. We determined the precision and accuracy of this method for both a recessed and a new working electrode by analyzing Neu5Ac and Neu5Gc contents of bovine fetuin and bovine and human transferrins. Results were consistent with published values and independent of the working electrode. The sensitivity, reproducibility, and accuracy of this method make it suitable for direct routine analysis of glycoprotein Neu5Ac and Neu5Gc contents.   相似文献   
8.
The results described in the accompanying article support the model in which glucosylphosphoryldolichol (Glc-P-Dol) is synthesized on the cytoplasmic face of the ER, and functions as a glucosyl donor for three Glc-P-Dol:Glc0-2Man9-GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) in the lumenal compartment. In this study, the enzymatic synthesis and structural characterization by NMR and electrospray-ionization tandem mass spectrometry of a series of water-soluble beta-Glc-P-Dol analogs containing 2-4 isoprene units with either the cis - or trans - stereoconfiguration in the beta-position are described. The water- soluble analogs were (1) used to examine the stereospecificity of the Glc-P-Dol:Glc0-2Man9GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) and (2) tested as potential substrates for a membrane protein(s) mediating the transbilayer movement of Glc-P-Dol in sealed ER vesicles from rat liver and pig brain. The Glc-P-Dol-mediated GlcTases in pig brain microsomes utilized [3H]Glc-labeled Glc-P-Dol10, Glc-P-(omega, c )Dol15, Glc-P(omega, t,t )Dol20, and Glc-P-(omega, t,c )Dol20as glucosyl donors with [3H]Glc3Man9GlcNAc2-P-P-Dol the major product labeled in vitro. A preference was exhibited for C15-20 substrates containing an internal cis -isoprene unit in the beta-position. In addition, the water-soluble analog, Glc-P-Dol10, was shown to enter the lumenal compartment of sealed microsomal vesicles from rat liver and pig brain via a protein-mediated transport system enriched in the ER. The properties of the ER transport system have been characterized. Glc- P-Dol10was not transported into or adsorbed by synthetic PC-liposomes or bovine erythrocytes. The results of these studies indicate that (1) the internal cis -isoprene units are important for the utilization of Glc-P-Dol as a glucosyl donor and (2) the transport of the water- soluble analog may provide an experimental approach to assay the hypothetical "flippase" proposed to mediate the transbilayer movement of Glc-P-Dol from the cytoplasmic face of the ER to the lumenal monolayer.   相似文献   
9.
Although enhanced cardiac matrix metalloproteinase (MMP)-2 synthesis has been associated with ventricular remodeling and failure, whether MMP-2 expression is a direct mediator of this process is unknown. We generated transgenic mice expressing active MMP-2 driven by the alpha-myosin heavy chain promoter. At 4 mo MMP-2 transgenic hearts demonstrated expression of the MMP-2 transgene, myocyte hypertrophy, breakdown of Z-band registration, lysis of myofilaments, disruption of sarcomere and mitochondrial architecture, and cardiac fibroblast proliferation. Hearts from 8-mo-old transgenic mice displayed extensive myocyte disorganization and dropout with replacement fibrosis and perivascular fibrosis. Older transgenic mice also exhibited a massive increase in cardiac MMP-2 expression, representing recruitment of endogenous MMP-2 synthesis, with associated expression of MMP-9 and membrane type 1 MMP. Increases in diastolic [control (C) 33 +/- 3 vs. MMP 51 +/- 12 microl; P = 0.003] and systolic (C 7 +/- 2 vs. MMP 28 +/- 14 microl; P = 0.003) left ventricular (LV) volumes and relatively preserved stroke volume (C 26 +/- 4 vs. MMP 23 +/- 3 microl; P = 0.16) resulted in markedly decreased LV ejection fraction (C 78 +/- 7% vs. MMP 48 +/- 16%; P = 0.0006). Markedly impaired systolic function in the MMP transgenic mice was demonstrated in the reduced preload-adjusted maximal power (C 240 +/- 84 vs. MMP 78 +/- 49 mW/microl(2); P = 0.0003) and decreased end-systolic pressure-volume relation (C 7.5 +/- 1.5 vs. MMP 4.7 +/- 2.0; P = 0.016). Expression of active MMP-2 is sufficient to induce severe ventricular remodeling and systolic dysfunction in the absence of superimposed injury.  相似文献   
10.
Sphingosine 1-phosphate (S1P) is a biologically active lysophospholipid that serves as a key regulator of cellular differentiation and survival. Immune stimuli increase S1P synthesis and secretion by mast cells and platelets, implicating this molecule in tissue responses to injury and inflammation. Binding of S1P to G(i) protein-coupled receptors activates phosphatidylinositol 3-kinase and Akt in a variety of tissues. To elucidate the mechanisms by which S1P enhances adult cardiac myocyte survival during hypoxia, we used a mouse cell culture system in which S1P(1) receptors were observed to transduce signals from exogenous S1P, an S1P(1) receptor antibody with agonist properties, and the pharmacological agents FTY720 and SEW2871. S1P(1) receptor mRNA and protein were abundantly expressed by adult mouse cardiac myocytes. S1P-S1P(1) receptor axis enhancement of myocyte survival during hypoxia was abolished by phosphatidylinositol 3-kinase inhibition. S1P(1) receptor function was closely associated with activation of Akt, inactivation of GSK-3beta, and reduction of cytochrome c release from heart mitochondria. These observations highlight the importance of S1P(1) receptors on ventricular myocytes as mediators of inducible resistance against cellular injury during severe hypoxic stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号