首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   573篇
  免费   54篇
  2023年   5篇
  2022年   6篇
  2021年   19篇
  2020年   7篇
  2019年   9篇
  2018年   14篇
  2017年   15篇
  2016年   25篇
  2015年   30篇
  2014年   25篇
  2013年   36篇
  2012年   40篇
  2011年   33篇
  2010年   33篇
  2009年   27篇
  2008年   33篇
  2007年   39篇
  2006年   27篇
  2005年   17篇
  2004年   23篇
  2003年   28篇
  2002年   13篇
  2001年   11篇
  2000年   9篇
  1999年   8篇
  1998年   2篇
  1997年   2篇
  1995年   3篇
  1994年   2篇
  1992年   3篇
  1991年   4篇
  1989年   5篇
  1988年   3篇
  1986年   3篇
  1985年   5篇
  1982年   2篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1976年   4篇
  1975年   15篇
  1974年   8篇
  1973年   4篇
  1971年   2篇
  1969年   1篇
  1967年   4篇
  1966年   3篇
  1964年   1篇
  1962年   1篇
  1944年   1篇
排序方式: 共有627条查询结果,搜索用时 156 毫秒
1.
The activity of invertase, glucose oxidase and amylase in the cephalic (post‐cerebral) and thoracic salivary glands is determined in Egyptian and Carniolan honeybees (Apis mellifera L). For this purpose, three ages of worker bees are selected for enzyme assays. The results show that the three target enzymes are detected in the two glands during the three worker ages, except invertase, which cannot be detected in the cephalic gland of newly emerged bees of both subspecies. In both glands, the secretion of invertase is highest, followed by amylase and then glucose oxidase. In Carniolan bees, invertase secretion of the cephalic and thoracic glands increases gradually with age. In Egyptian bees, invertase increases with age only in the cephalic gland, whereas, in the thoracic gland, the highest secretion activity is detected in 10–15‐day‐old bees. The highest amounts of glucose oxidase and amylase in the cephalic gland are detected in newly emerged individuals of both Egyptian and Carniolan bees. In the thoracic gland, however, the highest activity of both enzymes is recorded only in newly emerged Egyptian bees. The results are discussed in the light of bee management and biological aspects of the two subspecies.  相似文献   
2.
3.
4.
Human immunodeficiency virus type 1 encoded viral protein Vpr is essential for infection of macrophages by HIV-1. Furthermore, these macrophages are resistant to cell death and are viral reservoir. However, the impact of Vpr on the macrophage proteome is yet to be comprehended. The goal of the present study was to use a stable-isotope labeling by amino acids in cell culture (SILAC) coupled with mass spectrometry-based proteomics approach to characterize the Vpr response in macrophages. Cultured human monocytic cells, U937, were differentiated into macrophages and transduced with adenovirus construct harboring the Vpr gene. More than 600 proteins were quantified in SILAC coupled with LC-MS/MS approach, among which 136 were significantly altered upon Vpr overexpression in macrophages. Quantified proteins were selected and clustered by biological functions, pathway and network analysis using Ingenuity computational pathway analysis. The proteomic data illustrating increase in abundance of enzymes in the glycolytic pathway (pentose phosphate and pyruvate metabolism) was further validated by western blot analysis. In addition, the proteomic data demonstrate down regulation of some key mitochondrial enzymes such as glutamate dehydrogenase 2 (GLUD2), adenylate kinase 2 (AK2) and transketolase (TKT). Based on these observations we postulate that HIV-1 hijacks the macrophage glucose metabolism pathway via the Vpr-hypoxia inducible factor 1 alpha (HIF-1 alpha) axis to induce expression of hexokinase (HK), glucose-6-phosphate dehyrogenase (G6PD) and pyruvate kinase muscle type 2 (PKM2) that facilitates viral replication and biogenesis, and long-term survival of macrophages. Furthermore, dysregulation of mitochondrial glutamate metabolism in macrophages can contribute to neurodegeneration via neuroexcitotoxic mechanisms in the context of NeuroAIDS.  相似文献   
5.
6.
7.
JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag), in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag) family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases.  相似文献   
8.
Phytochemistry Reviews - Pisum sativum L., (Fabaceae), commonly known as dry, green or field pea, is one of the most popular and economically important legumes. It enjoys a worldwide culinary,...  相似文献   
9.
Three new cyclic heptapeptides (13) together with three known compounds (46) were isolated from a solid rice culture of the soil-derived fungus Clonostachys rosea. Fermentation of the fungus on white beans instead of rice afforded a new γ-lactam (7) and a known γ-lactone (8) that were not detected in the former extracts. The structures of the new compounds were elucidated on the basis of 1D and 2D NMR spectra as well as by HRESIMS data. Compounds 1 and 4 exhibited significant cytotoxicity against the L5178Y mouse lymphoma cell line with IC50 values of 4.1 and 0.1 µM, respectively. Compound 4 also displayed cytotoxicity against the A2780 human ovarian cancer cell line with an IC50 value of 3.5 µM. The preliminary structure-activity relationships are discussed.  相似文献   
10.
Although proteomics has been exploited in a wide range of diseases for identification of biomarkers and pathophysiological mechanisms, there are still biomedical disciplines such as otology where proteomics platforms are underused due to technical challenges and/or complex features of the disease. Thus, in the past few years, healthcare and scientific agencies have advocated the development and adoption of proteomic technologies in otological research. However, few studies have been conducted and limited literature is available in this area. Here, we present the state of the art of proteomics in otology, discussing the substantial evidence from recent experimental models and clinical studies in inner-ear conditions. We also delineate a series of critical issues including minute size of the inner ear, delicacy and poor accessibility of tissue that researchers face while undertaking otology proteomics research. Furthermore, we provide perspective to enhance the impact and lead to the clinical implementation of these proteomics-based strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号