首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有6条查询结果,搜索用时 24 毫秒
1
1.
2.
Abstract

The compound γ-aminobutyric acid (GABA) has many important physiological functions. The effect of glutamate decarboxylases and the glutamate/GABA antiporter on GABA production was investigated in Escherichia coli. Three genes, gadA, gadB, and gadC were cloned and ligated alone or in combination into the plasmid pET32a. The constructed plasmids were transformed into Escherichia coli BL21(DE3). Three strains, E. coli BL21(DE3)/pET32a-gadA, E. coli BL21(DE3)/pET32a-gadAB and E. coli BL21(DE3)/pET32a-gadABC were selected and identified. The respective titers of GABA from the three strains grown in shake flasks were 1.25, 2.31, and 3.98?g/L. The optimal titer of the substrate and the optimal pH for GABA production were 40?g/L and 4.2, respectively. The highest titer of GABA was 23.6?g/L at 36?h in batch fermentation and was 31.3?g/L at 57?h in fed-batch fermentation. This study lays a foundation for the development and use of GABA.  相似文献   
3.
C Liu  D Shen  J Guo  K Wang  H Wang  Z Yan  R Chen  L Ye 《BMC microbiology》2012,12(1):168
ABSTRACT: BACKGROUND: Several reports have associated Staphylococcus lugdunensis with the incidence of severe infection in humans; however, the frequency and prevalence of this microorganism and thus the propensity of its antimicrobial drug resistance is unknown in China. The objective of the current study was to determine the prevalence of Staphylococcus lugdunensis among six hundred and seventy non-replicate coagulase negative Staphylococcus (CoNS) isolates collected in a 12-month period from clinical specimens in the General Hospital of the People's Liberation Army in Beijing, China. RESULTS: Five (0.7%) of the 670 isolates of CoNS were identified as S. lugdunensis. Whereas three isolates were resistant to erythromycin, clindamycin, and penicillin and carried the ermC gene and a fourth one was resistant to cefoxitin and penicillin and carried the mecA gene, one isolate was not resistant to any of the tested antimicrobials. Pulse field gel electrophoretic analysis did not reveal widespread epidemiological diversity of the different isolates. CONCLUSION: Hence, even though S. lugdunensis may be yet unrecognized and undefined in China, it still might be the infrequent cause of infection and profound multi-drug resistance in the same population.  相似文献   
4.
β-amyloid peptide (Aβ) deposition derived from sequential cleavage of the amyloid precursor protein (APP) through the amyloidogenic pathway is an important characteristic feature of Alzheimer's disease (AD). During this process, cellular trafficking plays a crucial role. A large Sec7-domain containing ADP-ribosylation factor guanine nucleotide exchange factor (ARF-GEF), Golgi brefeldin A resistance factor 1 (GBF1) has been reported to initiate the ADP-ribosylation factor (Arf) activation cascade at trans-Golgi network, which plays a crucial function at the endoplasmic reticulum-Golgi interface. In this study, we investigated the role of GBF1 in APP transmembrane transport and Aβ formation. Using APP/PS1 (presenilin 1) overexpressing transgenic mice, we demonstrate that GBF1 has upregulated the expression of APP, indicating a role for GBF1 in APP physiological process. Knocking down of GBF1 using small interfering has significantly increased the intracellular but not the surface expression of APP. In contrast, overexpression of wild-type (WT) and guanine nucleotide exchange factor (GEF) in the activated form but not the GEF deficient mutation induced continuous activation of GBF1, which subsequently increased the surface level of APP. Interestingly, inhibition of GBF1 by c(BFA) also impaired APP trafficking and induced endoplasmic reticulum (ER) stress in SH-SY5Y cells. Our results thus for identified the role of GBF1 in APP trafficking and cleavage, and provide evidence for GBF1 as a possible therapeutic target in AD.  相似文献   
5.
Ru  Chen  Wang  Kaifei  Hu  Xiaotao  Chen  Dianyu  Wang  Wene  Yang  Haosheng 《Journal of Plant Growth Regulation》2023,42(3):1681-1703

Longer and more intense heat and drought stresses will occur in terrestrial ecosystems in the future. Although the effects of individual heat or drought stress on wheat plants have been largely explored, the regulatory effect of nitrogen (N) on winter wheat under heat, drought, and combined stresses and whether N alleviates damage to wheat plants caused by these stresses remain unclear. Therefore, the objective of the present study was to investigate the growth, photosynthesis, antioxidant enzyme and N metabolism-related enzyme activity, cell membrane system, osmoregulatory substance, and yield responses to heat, drought, and combined stresses in wheat plants and to clarify the regulatory effects of N on the growth, physiological and biochemical characteristics, and yield of wheat plants under stress conditions. The results showed that wheat plant exposure to individual heat or drought stress reduced photosynthesis and N metabolism-related enzyme activities and increased antioxidant enzyme activities, electrolyte leakage (EL), and the contents of MDA (malondialdehyde) and O2? (superoxide anion). The above parameters showed typical superposition effects under combined stress. Under individual heat or drought stress, wheat plants treated with a medium (N2) or high (N3) N supply maintained higher photosynthesis and N metabolism-related enzyme activities than did those treated with a low N supply (N1). Enhanced heat and drought tolerance in wheat plants under an appropriate N supply may be attributed to improved antioxidant capacity, as exemplified by increased activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR) and ascorbate peroxidase (APX), and to enhanced osmoregulation capacity, as signified by increased contents of soluble sugar (SS), soluble protein (SP), and proline (Pro). Variable importance in projection (VIP) analysis indicated that efficient SOD, POD, CAT, and GR activities and an increased Pro content had superior potential to alleviate heat, drought, and combined stress stresses in wheat plants, and the improvements in growth and grain yield in wheat plants further confirmed the oxidative stress alleviation and stress tolerance enhancement. However, positive effects of N on wheat growth and grain yield under combined stress were usually observed under a low N supply. These results may facilitate future research on the effects of N fertilizer on the stress resistance of winter wheat.

Graphical Abstract
  相似文献   
6.
This study investigated whether infrared spectroscopy combined with a deep learning algorithm could be a useful tool for determining causes of death by analyzing pulmonary edema fluid from forensic autopsies. A newly designed convolutional neural network‐based deep learning framework, named DeepIR and eight popular machine learning algorithms, were used to construct classifiers. The prediction performances of these classifiers demonstrated that DeepIR outperformed the machine learning algorithms in establishing classifiers to determine the causes of death. Moreover, DeepIR was generally less dependent on preprocessing procedures than were the machine learning algorithms; it provided the validation accuracy with a narrow range from 0.9661 to 0.9856 and the test accuracy ranging from 0.8774 to 0.9167 on the raw pulmonary edema fluid spectral dataset and the nine preprocessing protocol‐based datasets in our study. In conclusion, this study demonstrates that the deep learning‐equipped Fourier transform infrared spectroscopy technique has the potential to be an effective aid for determining causes of death.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号