首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
排序方式: 共有6条查询结果,搜索用时 203 毫秒
1
1.
Physiology and Molecular Biology of Plants - The recent global climate change has directly impacted major biotic and abiotic stress factors affecting crop productivity worldwide. Therefore, the...  相似文献   
2.
Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is a major fungal disease of tomato (Solanum lycopersicum L.). Xylem sap protein 10 (XSP10) and Salicylic acid methyl transferase (SlSAMT) have been identified as putative negative regulatory genes associated with Fusarium wilt of tomato. Despite their importance as potential genes for developing Fusarium wilt disease tolerance, very little knowledge is available about their expression, cell biology, and functional genomics. Semi-quantitative and quantitative real-time PCR expression analysis of XSP10 and SlSAMT, in this study, revealed higher expression in root and flower tissue respectively in different tomato cultivars viz. Micro-Tom (MT), Arka Vikas (AV), and Arka Abhed (AA). Therefore, the highly up-regulated expression of XSP10 and SlSAMT in biotic stress susceptible tomato cultivar (AV) than a multiple disease resistant cultivar (AA) suggested the disease susceptibility nature of these genes for Fusarium wilt. Sub-cellular localization analysis through the expression of gateway cloning constructs in tomato protoplasts and seedlings showed the predominant localization of XSP10 in the nucleus and SlSAMT at the cytoplasm. A strong in vivo protein–protein interaction of XSP10 with SlSAMT at cytoplasm from bi-molecular fluorescent complementation study suggested that these two proteins function together in regulating responses to Fusarium wilt tolerance in tomato.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01025-y.  相似文献   
3.

Endophytic bacteria associated with medicinal plants from Himalayan mountains possess great biotechnological potential. However, the influence of these Himalayan bacterial endophytes (HBE) on microalgal-promotion and metabolite production is still largely unknown. In this study, the interactions between two endophytic bacterial isolates of an endangered Himalayan medicinal plant and long-chain fatty acids accumulating green alga Micractinium sp. GA001 are characterized in synthetic co-culture systems. The endophytes Staphylococcus pasteuri PPE11 and Yersinia enterocolitica PPE118 significantly enhance microalgal cell numbers with 56% and 49% increase in total chlorophyll content, respectively. Co-culturing microalgae with these endophytes demonstrated distinct responses toward photosynthesis at different temperatures. Endophytes were metabolically active for an extended time (more than 28 days) in co-culturing. The findings were further complemented with genomics studies of endophytes which were subjected to multiple sequencing approaches to assemble and annotate their genomes, resulting in key genes involved in PGP activities, metabolites production and transportation being identified. This study expands the benefits and bioprocessing potential of endophytes of Himalayan medicinal plants.

  相似文献   
4.
Abiotic stresses are the key factors which negatively influence plant development and productivity and are the main cause of extensive agricultural production losses worldwide. Brassica napus is an oilseed crop of global economic significance and major contributor to the total oilseed production, quite often encounters abiotic stresses, resulting in reduced agricultural productivity. Hence, there is an immediate need being felt to raise B. napus cultivars which would be more suitable for various abiotic stress conditions presently and in the years to come. Biotechnology and molecular plant breeding has emerged as an important tool for molecular understanding of plant response to various abiotic stresses. Currently, various stress-responsive genes and mechanisms have been identified and functionally characterized in model plant Arabidopsis and other major crop plants such as Oryza sativa and Zea mays. However, very inadequate success has been achieved in this direction in a major oilseed crop such as B. napus. In this review, we present the latest methods and approaches of studying abiotic stress in B. napus. In this review, we describe the genes functioning as markers for crop breeding and discuss the recent progress and advances in genome editing by break through CRISPR/Cas9 multigene–multiplex approaches for developing multiple abiotic stress tolerance with our on-going research as a scheme. We also throw some light on molecular genetics, plant breeding and abiotic stress biotechnology of B. napus which offer a new prospective on the research directions for the practical plant breeding and functional genomics of B. napus in response to different abiotic stress conditions.  相似文献   
5.
The present study was conducted to determine the prevalence of hard tick infestations in cattle of West Bengal from July 2015 to June 2016. The prevalence of hard tick infestations was studied in relation to sex and age of animals and seasonal changes in a year. Cattle of selected places were examined carefully for the presence of ticks and in positive cases ticks were collected manually and identified on the basis of morphological characters. A total of 310 cattle were examined and out of which, 130 (41.93%) cattle were found to be infested with hard ticks and the prevalent species were Rhipicephalus (Boophilus) sp., Hyalomma sp. and Haemaphysalis sp. of ticks. A significantly (p < 0.01) higher infestation was observed in female cattle (43.30%) than males (35.71%). Age-wise highest prevalence of tick infestations was found in <1 year (65%) age group followed by >3 years age group (36.8%) and 1–3 years (35.63%) age group, respectively. Seasonally, the prevalence of hard ticks was highest (p < 0.01) in monsoon (59.25%) and lowest in winter (27.09%). The study revealed that the prevalence of Rhipicephalus (Boophilus) sp. (32.25%) was significantly (p < 0.01) higher compared to Hyalomma (12.58%) and Haemaphysalis sp. (3.22%). The observations of the present study would provide a basis for evolving effective control strategy for the management of ticks in bovines of West Bengal.  相似文献   
6.
Owing to rapid global climate change, the occurrence of multiple abiotic stresses is known to influence the outburst of biotic stress factors which affects crop productivity. Therefore, it is essential to understand the molecular and cell biology of key genes associated with multiple stress responses in crop plants. SlHyPRP1 and DEA1, the members of eight-cysteine motif (8CM) family genes have been recently identified as putative regulators of multiple stress responses in tomato (Solanum lycopersicum L.). In order to gain deeper insight into cell and molecular biology of SlHyPRP1 and DEA1, we performed their expression analysis in three tomato cultivars and in vivo cell biological analysis. The semi-quantitative PCR and qRT-PCR results showed the higher expression of SlHyPRP1 and DEA1 in leaf, stem, flower and root tissues as compared to fruit and seed tissues in all three cultivars. The expression levels of SlHyPRP1 and DEA1 were found to be relatively higher in a wilt susceptible tomato cultivar (Arka Vikas) than a multiple disease resistant cultivar (Arka Abhed). In vivo cell biological analysis through Gateway cloning and Bi-FC assay revealed the predominant sub-cellular localization and strong protein–protein interaction of SlHyPRP1 and DEA1 at the cytoplasm and plasma membrane. Moreover, SlHyPRP1 showed in vivo interaction with stress responsive proteins WRKY3 and MST1. Our findings suggest that SlHyPRP1 with DEA1 are co-expressed with tissue specificity and might function together by association with WRKY3 and MST1 in plasma membrane for regulating multiple stress responses in the tomato plant.Electronic supplementary materialThe online version of this article (10.1007/s12298-020-00913-z) contains supplementary material, which is available to authorized users.Keyword: Eight-cysteine motif, Hybrid proline rich proteins, Multiple stresses, Tissue specific expression, Plasma membrane, Protein-protein interaction  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号