首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60517篇
  免费   5457篇
  国内免费   3840篇
  2023年   637篇
  2022年   726篇
  2021年   2514篇
  2020年   1857篇
  2019年   2221篇
  2018年   2284篇
  2017年   1664篇
  2016年   2405篇
  2015年   3651篇
  2014年   4230篇
  2013年   4569篇
  2012年   5427篇
  2011年   4979篇
  2010年   3177篇
  2009年   2584篇
  2008年   3007篇
  2007年   2730篇
  2006年   2430篇
  2005年   2110篇
  2004年   1948篇
  2003年   1702篇
  2002年   1485篇
  2001年   1229篇
  2000年   1198篇
  1999年   1162篇
  1998年   603篇
  1997年   534篇
  1996年   547篇
  1995年   504篇
  1994年   521篇
  1993年   346篇
  1992年   561篇
  1991年   462篇
  1990年   451篇
  1989年   383篇
  1988年   305篇
  1987年   280篇
  1986年   260篇
  1985年   247篇
  1984年   192篇
  1983年   158篇
  1982年   139篇
  1981年   109篇
  1980年   89篇
  1979年   138篇
  1978年   104篇
  1977年   105篇
  1975年   105篇
  1974年   103篇
  1973年   101篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
Protein collective motions play a critical role in many biochemical processes. How to predict the functional motions and the related key residue interactions in proteins is important for our understanding in the mechanism of the biochemical processes. Normal mode analysis (NMA) of the elastic network model (ENM) is one of the effective approaches to investigate the structure-encoded motions in proteins. However, the motion modes revealed by the conventional NMA approach do not necessarily correspond to a specific function of protein. In the present work, a new analysis method was proposed to identify the motion modes responsible for a specific function of proteins and then predict the key residue interactions involved in the functional motions by using a perturbation approach. In our method, an internal coordinate that accounts for the specific function was introduced, and the Cartesian coordinate space was transformed into the internal/Cartesian space by using linear approximation, where the introduced internal coordinate serves as one of the axes of the coordinate space. NMA of ENM in this internal/Cartesian space was performed and the function-relevant motion modes were identified according to their contributions to the specific function of proteins. Then the key residue interactions important for the functional motions of the protein were predicted as the interactions whose perturbation largely influences the fluctuation along the internal coordinate. Using our proposed methods, the maltose transporter (MalFGK2) from E. Coli was studied. The functional motions and the key residue interactions that are related to the channel-gating function of this protein were successfully identified.  相似文献   
4.
5.
Biochar adsorption presents a potential remediation method for the control of hydrophobic organic compounds (HOCs) pollution in the environment. It has been found that HOCs bound on biochar become less bioavailable, so speculations have been proposed that HOCs will persist for longer half-life periods in biochar-amended soil/sediment. To investigate how biochar application affects coupled adsorption-biodegradation, nonylphenol was selected as the target contaminant, and biochar derived from rice straw was applied as the adsorbent. The results showed that there was an optimal dosage of biochar in the presence of both adsorption and biodegradation for a given nonylphenol concentration, thus allowing the transformation of nonylphenol to be optimized. Approximately 47.6% of the nonylphenol was biodegraded in two days when 0.005 g biochar was added to 50 mg/L of nonylphenol, which was 125% higher than the relative quantity biodegraded without biochar, though the resistant desorption component of nonylphenol reached 87.1%. All adsorptive forms of nonylphenol (f rap, f slow, f r) decreased gradually during the biodegradation experiment, and the resistant desorption fraction of nonylphenol (f r) on biochar could also be biodegraded. It was concluded that an appropriate amount of biochar could stimulate biodegradation, not only illustrating that the dosage of biochar had an enormous influence on the half-life periods of HOCs but also alleviating concerns that enhanced HOCs binding by biochar may cause secondary pollution in biochar-modified environment.  相似文献   
6.
4-Phenylylboronic acid enhances the light emission from the horseradish peroxidase catalysed oxidation of luminol by hydrogen peroxide. Optimization studies showed that the greatest enhancement was obtained using micromolar concentrations of the new enhancer. The largest degree of enhancement was found with the basic isoenzyme of horseradish peroxidase (Type VIA), and lesser degrees of enhancement were obtained with Type VII and Type IX horseradish peroxidase. The enhancer was also effective in the peroxidase catalysed oxidation of isoluminol by peroxide.  相似文献   
7.
8.
9.
P21 activated kinase (PAK), PAK interacting exchange factor (PIX), and G protein coupled receptor kinase interactor (GIT) compose a highly conserved signaling module controlling cell migrations, immune system signaling, and the formation of the mammalian nervous system. Traditionally, this signaling module is thought to facilitate the function of RAC and CDC-42 GTPases by allowing for the recruitment of a GTPase effector (PAK), a GTPase activator (PIX), and a scaffolding protein (GIT) as a regulated signaling unit to specific subcellular locations. Instead, we report here that this signaling module functions independently of RAC/CDC-42 GTPases in vivo to control the cell shape and migration of the distal tip cells (DTCs) during morphogenesis of the Caenorhabditis elegans gonad. In addition, this RAC/CDC-42–independent PAK pathway functions in parallel to a classical GTPase/PAK pathway to control the guidance aspect of DTC migration. Among the C. elegans PAKs, only PAK-1 functions in the GIT/PIX/PAK pathway independently of RAC/CDC42 GTPases, while both PAK-1 and MAX-2 are redundantly utilized in the GTPase/PAK pathway. Both RAC/CDC42–dependent and –independent PAK pathways function with the integrin receptors, suggesting that signaling through integrins can control the morphology, movement, and guidance of DTC through discrete pathways. Collectively, our results define a new signaling capacity for the GIT/PIX/PAK module that is likely to be conserved in vertebrates and demonstrate that PAK family members, which are redundantly utilized as GTPase effectors, can act non-redundantly in pathways independent of these GTPases.  相似文献   
10.
Currently, many diabetic cardiomyopathy (DC) studies focus on either in vitro molecular pathways or in vivo whole-heart properties such as ejection fraction. However, as DC is primarily a disease caused by changes in structural and functional properties, such studies may not precisely identify the influence of hyperglycemia or hyperlipidemia in producing specific cellular changes, such as increased myocardial stiffness or diastolic dysfunction. To address this need, we developed an in vitro approach to examine how structural and functional properties may change as a result of a diabetic environment. Particle-tracking microrheology was used to characterize the biomechanical properties of cardiac myocytes and fibroblasts under hyperglycemia or hyperlipidemic conditions. We showed that myocytes, but not fibroblasts, exhibited increased stiffness under diabetic conditions. Hyperlipidemia, but not hyperglycemia, led to increased cFos expression. Although direct application of reactive oxygen species had only limited effects that altered myocyte properties, the antioxidant N-acetylcysteine had broader effects in limiting glucose or fatty-acid alterations. Changes consistent with clinical DC alterations occur in cells cultured in elevated glucose or fatty acids. However, the individual roles of glucose, reactive oxygen species, and fatty acids are varied, suggesting multiple pathway involvement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号