首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   29篇
  2023年   1篇
  2021年   6篇
  2020年   4篇
  2019年   10篇
  2018年   5篇
  2017年   4篇
  2016年   10篇
  2015年   12篇
  2014年   13篇
  2013年   16篇
  2012年   24篇
  2011年   26篇
  2010年   24篇
  2009年   18篇
  2008年   23篇
  2007年   17篇
  2006年   21篇
  2005年   20篇
  2004年   17篇
  2003年   11篇
  2002年   18篇
  2001年   11篇
  2000年   9篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1993年   1篇
  1992年   6篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有353条查询结果,搜索用时 15 毫秒
1.
2.
3.

Background  

Detecting candidate B-cell epitopes in a protein is a basic and fundamental step in many immunological applications. Due to the impracticality of experimental approaches to systematically scan the entire protein, a computational tool that predicts the most probable epitope regions is desirable.  相似文献   
4.
We have studied erythrocyte Ca2+-ATPase as a model target for elucidating effects of activated oxygen on the erythrocyte membrane. Either intracellular or extracellular generation of activated oxygen causes parallel decrements in Ca2+-ATPase activity and cytoplasmic GSH, oxidation of membrane protein thiols, and lipid peroxidation. Subsequent incubation with either dithiothreitol or glucose allows only partial recovery of Ca2+-ATPase, indicating both reversible and irreversible components which are modeled herein using diamide and t-butyl hydroperoxide. The reversible component reflects thiol oxidation, and its recovery depends upon GSH restoration. The irreversible component is largely due to lipid peroxidation, which appears to act through mechanisms involving neither malondialdehyde nor secondary thiol oxidation. However, some portion of the irreversible component could also reflect oxidation of thiols which are inaccessible for reduction by GSH, since we demonstrate existence of different classes of thiols relevant to Ca2+-ATPase activity. Activated oxygen has an exaggerated effect on Ca2+-ATPase of GSH-depleted cells. Sickle erythrocytes treated with dithiothreitol show a heterogeneous response of Ca2+-ATPase activity. These findings are potentially relevant to oxidant-induced hemolysis. They also may be pertinent to oxidative alteration of functional or structural membrane components in general, since many components share with Ca2+-ATPase both free thiols and close proximity to unsaturated lipid.  相似文献   
5.
6.
Copper (I) binding by metallochaperone transport proteins prevents copper oxidation and release of the toxic ions that may participate in harmful redox reactions. The Cu (I) complex of the peptide model of a Cu (I) binding metallochaperone protein, which includes the sequence MTCSGCSRPG (underlined is conserved), was determined in solution under inert conditions by NMR spectroscopy.NMR is a widely accepted technique for the determination of solution structures of proteins and peptides. Due to difficulty in crystallization to provide single crystals suitable for X-ray crystallography, the NMR technique is extremely valuable, especially as it provides information on the solution state rather than the solid state. Herein we describe all steps that are required for full three-dimensional structure determinations by NMR. The protocol includes sample preparation in an NMR tube, 1D and 2D data collection and processing, peak assignment and integration, molecular mechanics calculations, and structure analysis. Importantly, the analysis was first conducted without any preset metal-ligand bonds, to assure a reliable structure determination in an unbiased manner.  相似文献   
7.
Suspect screening analysis is a targeted metabolomics approach in which identification of compounds relies on specific available information such as their molecular formula and isotopic pattern. This method was applied to the study of grape metabolomics with an UPLC/MS high-resolution Q-TOF mass spectrometer (nominal resolution 40,000) coupled with a Jet Stream ionization source. The present paper describes the detailed qualitative and quantitative study of grape stilbenes, the principal polyphenols associated with the beneficial effects of drinking wine. For identification of compounds, a new database was expressly constructed from the molecular information of potential metabolites of grape and wine from the literature and other electronic databases. Currently, GrapeMetabolomics contains about a thousand putative grape compounds. If untargeted analysis of a sample provides identification of a new compound with a sufficiently confident score, it is added to the database. Thus, by increasing the number of samples studied, GrapeMetabolomics can be expanded. This method is effective for identification of the molecular formulae of several hundred metabolites in two runs (positive and negative ionization) with minimal sample preparation, and can also be used to analyse some single classes of compounds involved in cell and tissue metabolism. With this approach, a total of 18 stilbene derivatives was identified in two grape samples (Raboso Piave and Primitivo) on the basis of accurate mass measurements and isotopic patterns, and identification was confirmed by MS/MS analysis. The approach can also potentially be applied to the metabolomics of other plant varieties.  相似文献   
8.
Sexual reproduction in flowering plants depends on the fitness of the male gametophyte during fertilization. Because pollen development is highly sensitive to hot and cold temperature extremes, reliable methods to evaluate pollen viability are important for research into improving reproductive heat stress (HS) tolerance. Here, we describe an approach to rapidly evaluate pollen viability using a reactive oxygen species (ROS) probe dichlorodihydrofluorescein diacetate (i.e. H2DCFDA‐staining) coupled with flow cytometry. In using flow cytometry to analyze mature pollen harvested from Arabidopsis and tomato flowers, we discovered that pollen distributed bimodally into ‘low‐ROS’ and ‘high‐ROS’ subpopulations. Pollen germination assays following fluorescence‐activated cell sorting revealed that the high‐ROS pollen germinated with a frequency that was 35‐fold higher than the low‐ROS pollen, supporting a model in which a significant fraction of a flower's pollen remains in a low metabolic or dormant state even after hydration. The ability to use flow cytometry to quantify ROS dynamics within a large pollen population was shown by dose‐dependent alterations in DCF‐fluorescence in response to oxidative stress or antioxidant treatments. HS treatments (35°C) increased ROS levels, which correlated with a ~60% reduction in pollen germination. These results demonstrate the potential of using flow cytometry‐based approaches to investigate metabolic changes during stress responses in pollen.  相似文献   
9.
10.
Hopanoids are a class of membrane lipids found in diverse bacterial lineages, but their physiological roles are not well understood. The ethanol fermenter Zymomonas mobilis features the highest measured concentration of hopanoids, leading to the hypothesis that these lipids can protect against the solvent toxicity. However, the lack of genetic tools for manipulating hopanoid composition in this bacterium has limited their further functional analysis. Due to the polyploidy (>50 genome copies per cell) of Z. mobilis, we found that disruptions of essential hopanoid biosynthesis (hpn) genes act as genetic knockdowns, reliably modulating the abundance of different hopanoid species. Using a set of hpn transposon mutants, we demonstrate that both reduced hopanoid content and modified hopanoid polar head group composition mediate growth and survival in ethanol. In contrast, the amount of hopanoids, but not their head group composition, contributes to fitness at low pH. Spectroscopic analysis of bacterial‐derived liposomes showed that hopanoids protect against several ethanol‐driven phase transitions in membrane structure, including lipid interdigitation and bilayer dissolution. We propose that hopanoids act through a combination of hydrophobic and inter‐lipid hydrogen bonding interactions to stabilize bacterial membranes during solvent stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号