首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
  2016年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Transgenic crops expressing toxin proteins from Bacillus thuringiensis (Bt) have been deployed on a large scale for management of Helicoverpa armigera. Resistance to Bt toxins has been documented in several papers, and therefore, we examined the role of midgut microflora of H. armigera in its susceptibility to Bt toxins. The susceptibility of H. armigera to Bt toxin Cry1Ac was assessed using Log‐dose‐Probit analysis, and the microbial communities were identified by 16S rRNA sequencing. The H. armigera populations from nine locations harbored diverse microbial communities, and had some unique bacteria, suggesting a wide geographical variation in microbial community in the midgut of the pod borer larvae. Phylotypes belonging to 32 genera were identified in the H. armigera midgut in field populations from nine locations. Bacteria belonging to Enterobacteriaceae (Order Bacillales) were present in all the populations, and these may be the common members of the H. armigera larval midgut microflora. Presence and/or absence of certain species were linked to H. armigera susceptibility to Bt toxins, but there were no clear trends across locations. Variation in susceptibility of F1 neonates of H. armigera from different locations to the Bt toxin Cry1Ac was found to be 3.4‐fold. These findings support the idea that insect migut microflora may influence the biological activity of Bt toxins.  相似文献   
2.
Biological activity of the bacterium Bacillus thuringiensis Berliner (Bt) against insect pests is influenced by the host plants. To understand the underlying mechanism of variation in biological activity of Bt on host plants, we studied the effect of chemicals from the surface of chickpea (Cicer arietinum L., Fabaceae) leaves (ICCC 37 and ICC 506EB), sorghum [Sorghum bicolor (L.) Moench, Poaceae] grain (ICSV 745 and IS 18698), pigeon pea [Cajanus cajan (L.) Millsp., Fabaceae] pods (ICPL 87 and ICPL 332WR), and cotton (Gossypium hirsutum L., Malvaceae) squares (RCH 2 and Bt RCH 2), on which Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) feeds under natural conditions. Surface chemicals extracted in water from host plant leaves were added to the standard artificial diet containing a commercial formulation of Bt or Cry1Ac. Data were recorded on larval and pupal weights, pupation, adult emergence, larval and pupal periods, adult longevity, and fecundity. Weights of H. armigera at 5 days after initiation of the experiment were significantly reduced on artificial diets containing Bt + pod washings of ICPL 87 and ICPL 332WR, grain washings of ICSV 745, or square washings of RCH 2, and Cry1Ac + leaf‐surface washings of ICC 506EB. Pupal weights were lower on diets containing leaf‐surface washings of ICCC 37 + Bt than on standard artificial diet. Larval periods were prolonged on diets containing Bt + leaf‐surface washings of ICCC 37, pod washings of ICPL 87, and square washings of RCH 2, and on standard artificial diet + Cry1Ac. Pupation was significantly higher on standard artificial diet + Cry1Ac than on diets with Bt + grain washings of ICSV 745 and Cry1Ac + square washings of RCH 2 and Bt RCH 2. Adult emergence was lowest on diets with square washings of RCH 2 + Bt and grain washings of ICSV 745 + Cry1Ac. The results suggested that leaf‐surface washings play an important role in biological activity of Bt/Cry1Ac against H. armigera.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号