首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   4篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1977年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
2.
3.

Background  

Seeds of the legume plant Lathyrus sativus, which is grown in arid and semi arid tropical regions, contain Diamino Propionic acid (DAP). DAP is a neurotoxin, which, when consumed, causes a disease called Lathyrism. Lathryrism may manifest as Neurolathyrism or Osteolathyrism, in which the nervous system, and bone formation respectively, are affected. DAP ammonia lyase is produced by a few microorganisms such as Salmonella typhi, Salmonella typhimurium and Pseudomonas, and is capable of detoxifying DAP.  相似文献   
4.
A mathematical model is proposed which systematically investigates complex calcium oscillations in pancreatic acinar cells. This model is based on calcium-induced calcium release via inositol trisphosphate receptors (IPR) and ryanodine receptors (RyR) and includes calcium modulation of inositol (1,4,5) trisphosphate (IP3) levels through feedback regulation of degradation and production. In our model, the apical and the basal regions are separated by a region containing mitochondria, which is capable of restricting Ca2+ responses to the apical region. We were able to reproduce the observed oscillatory patterns, from baseline spikes to sinusoidal oscillations. The model predicts that calcium-dependent production and degradation of IP3 is a key mechanism for complex calcium oscillations in pancreatic acinar cells. A partial bifurcation analysis is performed which explores the dynamic behaviour of the model in both apical and basal regions.  相似文献   
5.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
6.
7.
Regeneration and reestablishment of synaptic connections is an important topic in neurobiological research. In the present study, the regeneration of auditory afferents and the accompanying effects in the central nervous system are investigated in nymphs and adults of the bush cricket Tettigonia viridissima L. (Orthoptera: Tettigoniidae). In all animals in which the tympanal nerve is crushed, neuronal tracing shows a regrowth of the afferents into the prothoracic ganglion. This regeneration is seen in both adult and nymphal stages and starts 10–15 days after nerve crushing. Physiological recordings from the leg nerve indicate a recovery of tympanal fibres and a formation of functional connections to interneurones in the same time range. Electrophysiological recordings from the neck connective suggest additional contralateral sprouting of interneurones and the formation of aberrant connections. The regeneration processes of the tympanal nerve in nymphal stages and adults appear to be similar.  相似文献   
8.
Insect attraction to host plants may be partly mediated by visual stimuli. In the present study, the responses of adult Hycleus apicicornis (Guér.) (Coleoptera: Meloidae) to plant models of different colours, different combinations of two colours, or three hues of blue of different shapes are compared. Single‐colour models comprised the colours sky blue, bright green, yellow, red, white and black. Sky blue (reflecting light in the 440–500 nm region) is the most attractive, followed by white, which reflects light over a broader range (400–700 nm). On landing on sky blue targets, beetles exhibit feeding behaviour immediately. When different hues of blue (of different shapes) are compared, sky blue is preferred over turquoise, followed by dark blue, indicating that H. apicicornis is more attracted to lighter hues of blue than to darker ones. No significant differences are found between the three shapes (circle, square and triangle) tested, suggesting that reflectance associated with colour could be a more important visual cue than shape for host location by H. apicicornis. The preference of H. apicicornis for sky blue can be exploited in designing an attractive trap for its management.  相似文献   
9.
Flowers of the genus Arum are known to attract dung‐breeding flies and beetles through olfactory deceit. In addition to this strategy, the genus has evolved several other pollination mechanisms. The present study aimed to characterize the pollination strategies of the Cretan Arum species by investigating the flowering phenology, thermogeny, inflorescence odours, and the pollinating fauna. The results obtained show that Arum cyrenaicum and Arum concinnatum emit a strong dung smell and exhibit the distinctive features associated with this pollination syndrome. Both species are highly thermogenic, have a similar odour profile and attract small‐bodied Diptera. Although sharing the same habitat, these two plant species are never found growing sympatrically as a result of the early blooming period of A. cyrenaicum. By contrast, Arum creticum and Arum idaeum have evolved a more traditional and mutually beneficial pollination mechanism. The stinking smell has been replaced by a more flower‐like odour that attracts bees (Lasioglossum sp.) and, occasionally, bugs (Dionconotus cruentatus). Although attracting the same pollinator, the main compound present in the odour of A. creticum is different from that of A. idaeum. Principal component analysis (PCA), based on physiologically active components of the flower odours determined by testing on the antenna of the Lasioglossum bee, revealed two different clusters, indicating that pollinators can potentially discriminate between the odours of the two species. A further PCA on the main floral odour volatiles as identified by gas chroatography‐mass spectroscopy from all the Arum species under investigation displayed odour‐based similarities and differences among the species. The PCA‐gas chomotography‐electroantennographic detection active peaks analysis showed that the two species, A. creticum and A. idaeum, form two groups and are clearly separated from A. cyrenaicum and A. concinnatum, which, conversely, cluster together. The evolutionary forces and selective pressures leading to diversification of pollination mechanisms in the Cretan Arum spp. are discussed. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 991–1001.  相似文献   
10.

Background and aims

We sought to understand the environmental constraints on an arid-zone riparian phreatophtye, saltcedar (Tamarix ramosissima and related species and hybrids), growing over a brackish aquifer along the Colorado River in the western U.S. Depth to groundwater, meteorological factors, salinity and soil hydraulic properties were compared at stress and non-stressed sites that differed in salinity of the aquifer, soil properties and water use characteristics, to identify the factors depressing water use at the stress site.

Methods

Saltcedar leaf-level transpiration (EL), LAI, and stomatal conductance (GS) were measured over a growing season (June–September) with Granier and stem heat balance sensors and were compared to those for saltcedar at the non-stress site determined in a previous study. Transpiration on a ground-area basis (EG) was calculated as EL?×?LAI. Environmental factors were regressed against hourly and daily EL and GS at each site to determine the main factors controlling water use at each site.

Results

At the stress site, mean EG over the summer was only 30 % of potential evapotranspiration (ETo). GS and EG peaked between 8 and 9 am then decreased over the daylight hours. Daytime GS was negatively correlated with vapor pressure deficit (VPD) (P?<?0.05). By contrast, EG at the non-stress site tracked the daily radiation curve, was positively correlated with VPD and was nearly equal to ETo on a daily basis. Depth to groundwater increased over the growing season at both sites and resulted in decreasing EG but could not explain the difference between sites. Both sites had high soil moisture levels throughout the vadose zone with high calculated unsaturated conductivity. However, salinity in the aquifer and vadose zone was three times higher at the stress site than at the non-stress site and could explain differences in plant EG and GS.

Conclusions

Salts accumulated in the vadose zone at both sites so usable water was confined to the saturated capillary fringe above the aquifer. Existence of a saline aquifer imposes several types of constraints on phreatophyte EG, which need to be considered in models of plant water uptake. The heterogeneous nature of saltcedar EG over river terraces introduces potential errors into estimates of ET by wide-area methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号