首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2017年   1篇
  2012年   1篇
  2008年   1篇
  2005年   2篇
  2004年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有8条查询结果,搜索用时 187 毫秒
1
1.

Background  

Several forms of progressive retinal atrophy (PRA) segregate in more than 100 breeds of dog with each PRA segregating in one or a few breeds. This breed specificity may be accounted for by founder effects and genetic drift, which have reduced the genetic heterogeneity of each breed, thereby facilitating the identification of causal mutations. We report here a new form of PRA segregating in the Border Collie breed. The clinical signs, including the loss of night vision and a progressive loss of day vision, resulting in complete blindness, occur at the age of three to four years and may be detected earlier through systematic ocular fundus examination and electroretinography (ERG).  相似文献   
2.
3.

Background

While the impact of inflammation as the substantial driving force of atherosclerosis has been investigated in detail throughout the years, the influence of negative regulators of pro-atherogenic pathways on plaque development has remained largely unknown. Suppressor of cytokine signaling (SOCS)-1 potently restricts transduction of various inflammatory signals and, thereby modulates T-cell development, macrophage activation and dendritic cell maturation. Its role in atherogenesis, however has not been elucidated so far.

Methods and Results

Loss of SOCS-1 in the low-density lipoprotein receptor deficient murine model of atherosclerosis resulted in a complex, systemic and ultimately lethal inflammation with increased generation of Ly-6Chi monocytes and activated macrophages. Even short-term exposure of these mice to high-cholesterol dieting caused enhanced atherosclerotic plaque development with accumulation of M1 macrophages, Ly-6C positive cells and neutrophils.

Conclusion

Our data not only imply that SOCS-1 is athero-protective but also emphasize the fundamental, regulatory importance of SOCS-1 in inflammation-prone organisms.  相似文献   
4.
The relative efficiencies of microdialysis probes were determined both in vitro and in vivo using tritiated water. Tritiated water (THO) freely distributes throughout the fluid spaces of an experimental animal and, at equilibrium, the brain extracellular concentration of THO is the same as the plasma concentration. Microdialysis probes were inserted into the right caudoputamen of anesthetized rats. The rats were injected with THO and after one hour microdialysis samples were collected at flow rates between 0.2 and 10.0 ul/min. The in vitro relative efficiency for THO was computed as the ratio of the THO concentration in the dialysate to that of the solution the probe was immersed in. The in vivo relative efficiency was computed as the ratio of the concentration of THO in the brain dialysate to that measured in the plasma of the rat. Both the in vitro and in vivo relative efficiencies for THO decrease with increasing flow rates, but they differ from each other except at very low flow rates (less than 0.25 ul/min). The in vitro relative efficiency at a given probe flow is the maximum efficiency that can be attained in vivo at that flow. The surface of effective exchange (Se) is the fraction of that maximum which is attained in vivo. This study also demonstrates how the effective surface area can be computed at any probe flow rate and how it can be used as a correction factor.  相似文献   
5.
Activated matrix metalloproteinases (MMPs) in patients with acute coronary syndromes may contribute to plaque destabilization. Since reactive oxygen species (ROS) induce MMP-2 and angiotensin II (ANG II) enhances NADPH-oxidase-dependent ROS formation, we assessed whether ANG II induces MMP-2 in a NADPH-oxidase-dependent manner. MMP-2 mRNA expression and activity were analyzed in wildtype and p47phox-deficient (p47phox-/-) murine smooth muscle cells (SMC). To address a clinical implication, sections of human atherosclerotic arteries were stained for MMP-2, p47phox, ANG II, AT1-receptor, and alpha-smooth muscle cell actin (alpha-SMC actin). MMP-2 protein expression and activity from these arteries were compared to those without atherosclerosis. ANG II enhances mRNA synthesis and activity of MMP-2 in a p47phox-dependent manner. Immunohistochemical analyses revealed a co-localization of MMP-2 with p47phox, ANG II, AT1-receptor, and alpha-SMC actin. MMP-2 protein expression and gelatinolytic activity are increased in atherosclerotic arteries. Thus, activation of the renin-angiotensin system may contribute to plaque destabilization via ROS-dependent induction of MMP-2.  相似文献   
6.
7.
Acetaldehyde, a primary metabolite of alcohol, forms DNA adducts and disrupts the DNA replication process, causing genomic instability, a hallmark of cancer. Indeed, chronic alcohol consumption accounts for approximately 3.6% of all cancers worldwide. However, how the adducts are prevented and repaired after acetaldehyde exposure is not well understood. In this report, we used the fission yeast Schizosaccharomyces pombe as a model organism to comprehensively understand the genetic controls of DNA damage avoidance in response to acetaldehyde. We demonstrate that Atd1 functions as a major acetaldehyde detoxification enzyme that prevents accumulation of Rad52-DNA repair foci, while Atd2 and Atd3 have minor roles in acetaldehyde detoxification. We found that acetaldehyde causes DNA damage at the replication fork and activates the cell cycle checkpoint to coordinate cell cycle arrest with DNA repair. Our investigation suggests that acetaldehyde-mediated DNA adducts include interstrand-crosslinks and DNA-protein crosslinks. We also demonstrate that acetaldehyde activates multiple DNA repair pathways. Nucleotide excision repair and homologous recombination, which are both epistatically linked to the Fanconi anemia pathway, have major roles in acetaldehyde tolerance, while base excision repair and translesion synthesis also contribute to the prevention of acetaldehyde-dependent genomic instability. We also show the involvement of Wss1-related metalloproteases, Wss1 and Wss2, in acetaldehyde tolerance. These results indicate that acetaldehyde causes cellular stresses that require cells to coordinate multiple cellular processes in order to prevent genomic instability. Considering that acetaldehyde is a human carcinogen, our genetic studies serve as a guiding investigation into the mechanisms of acetaldehyde-dependent genomic instability and carcinogenesis.  相似文献   
8.
A simple method is pressented for the analysis of time-difference, large-zone chromatography profiles, The method is derived from basic theory and is applicable to multicomponent as well as single-component systems. Simple computer simulations are used to demonstrate the inaccuracies of earlier, more empirical methods. This has been tested on several proteins using an inexpensive, semi-automated, data acquisition and control system.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号