首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   32篇
  2023年   1篇
  2022年   3篇
  2021年   21篇
  2020年   9篇
  2019年   9篇
  2018年   12篇
  2017年   5篇
  2016年   7篇
  2015年   7篇
  2014年   15篇
  2013年   12篇
  2012年   10篇
  2011年   12篇
  2010年   3篇
  2009年   8篇
  2008年   7篇
  2007年   4篇
  2006年   10篇
  2005年   7篇
  2004年   11篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1951年   1篇
排序方式: 共有215条查询结果,搜索用时 15 毫秒
1.
Introduction

Cancer is the second major threat to human society and one of the main challenges facing healthcare systems. One of the main problems of cancer care is the metastases of cancer cells that cause 90% of deaths due to cancer. Multiple molecular mechanisms are involved in cancer cell metastasis. Therefore, a better understanding of these molecular mechanisms is necessary for designing restrictive strategies against cancer cell metastasis. Accumulating data suggests that MicroRNAs (miRNAs) are involved in metastasis and invasion of human tumors through regulating multiple genes expression levels that are involved in molecular mechanisms of metastasis. The goal of this review is to present the molecular pathways by which the miR 200 family manifests its effects on EMT, cancer stem cells, angiogenesis, anoikis, and the effects of tumor cell metastases.

Methods

A detailed literature search was conducted to find information about the role of the miR-200 family in the processes involved in metastasis in various databases.

Results

Numerous lines of evidence revealed an association between the mir-200 family and metastasis of human tumors by impressing processes such as cancer stem cells, EMT, angiogenesis, and anoikis.

Conclusions

Understanding the molecular mechanisms associated with metastasis in which the miR-200 family is involved can be effective in treating metastatic cancers.

Graphic abstract
  相似文献   
2.
In this study, the chemical features of dendritic mesoporous silica nanoparticles (DMSNs) provided the opportunity to design a nanostructure with the capability to intelligently transport the payload to the tumor cells. In this regard, doxorubicin (DOX)-encapsulated DMSNs was electrostatically surface-coated with polycarboxylic acid dextran (PCAD) to provide biocompatible dextran-capped DMSNs (PCAD-DMSN@DOX) with controlled pH-dependent drug release. Moreover, a RNA aptamer against a cancer stem cell (CSC) marker, CD133 was covalently attached to the carboxyl groups of DEX to produce a CD133-PCAD-DMSN@DOX. Then, the fabricated nanosystem was utilized to efficiently deliver DOX to CD133+ colorectal cancer cells (HT29). The in vitro evaluation in terms of cellular uptake and cytotoxicity demonstrated that the CD133-PCAD-DMSN@DOX specifically targets HT29 as a CD133 overexpressed cancer cells confirmed by flow cytometry and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. The potentially promising intelligent-targeted platform suggests that targeted dextran-capped DMSNs may find impressive application in cancer therapy.  相似文献   
3.
A virus-neutralizing monoclonal antibody specific for glycoprotein C (gC) of herpes simplex virus type 1 strain KOS was used to select a number of neutralization-resistant mutants. A total of 103 of these mutants also were resistant to neutralization by a pool of gC-specific antibodies and thus were operationally defined as gC-. Analysis of mutant-infected cell mRNA showed that a 2.7-kilobase mRNA, comparable in size to the wild-type gC mRNA, was produced by nearly all mutants. However, six mutants, gC-5, gC-13, gC-21, gC-39, gC-46, and gC-98, did not produce the normal-size gC mRNA but rather synthesized a novel 1.1-kilobase RNA species. These mutants had deletions of 1.6 kilobases in the coding sequence of the gC structural gene, which explains their gC- phenotype. Despite the production of an apparently normal mRNA by the remaining 97 mutants, only 7 mutants produced a detectable gC polypeptide. In contrast to wild-type gC, which is a membrane-bound glycoprotein with an apparent molecular weight of 130,000 (130K), five of these mutants quantitatively secreted proteins of lower molecular weight into the culture medium. These were synLD70 (101K), gC-8 (109K), gC-49 (112K), gC-53 (108K), and gC-85 (106K). The mutant gC-3 secreted a protein that was indistinguishable in molecular weight from wild-type KOS gC. Another mutant, gC-44, produced a gC protein which also was indistinguishable from wild-type gC by molecular weight and which remained cell associated. Pulse-labeling of infected cells in the presence and absence of the glycosylation inhibitor tunicamycin demonstrated that these proteins were glycosylated and provided estimates of the molecular weights of the nonglycosylated primary translation products. The smallest of these proteins was produced by synLD70 and was 48K, about two-thirds the size of the wild-type polypeptide precursor (73K). Physical mapping of the mutations in synLD70 and gC-8 by marker rescue placed these mutations in the middle third of the gC coding sequence. Mapping of the mutations in other gC- mutants, including two in which no protein product was detected, also placed these mutations within or very close to the gC gene. The biochemical and genetic data available on mutants secreting gC gene products suggest that secretion is due to the lack of a functional transmembrane anchor sequence on these mutant glycoproteins.  相似文献   
4.
The herpes simplex virus type 1 UL28 gene contains a 785-amino-acid open reading frame that codes for an essential protein. Studies with temperature-sensitive mutants which map to the UL28 gene indicate that the UL28 gene product (ICP18.5) is required for packaging of viral DNA and for expression of viral glycoproteins on the surface of infected cells (C. Addison, F. J. Rixon, and V. G. Preston, J. Gen. Virol. 71:2377-2384, 1990; B. A. Pancake, D. P. Aschman, and P. A. Schaffer, J. Virol. 47:568-585, 1983). In this study, we describe the isolation of two UL28 deletion mutants that were constructed and propagated in Vero cells transformed with the UL28 gene. The mutants, gCB and gC delta 7B, contained deletions of 1,881 and 537 bp, respectively, in the UL28 gene. Although the mutants synthesize viral DNA, they fail to form plaques or produce infectious virus in cells that do not express the UL28 gene. Transmission electron microscopy and Southern blot analysis demonstrated that both mutants are defective in cleavage and encapsidation of viral DNA. Analysis by cell surface immunofluorescence showed that the UL28 gene is not required for expression of viral glycoproteins on the surface of infected cells. A rabbit polyclonal antiserum was made against an Escherichia coli-expressed Cro-UL28 fusion protein. This antibody reacted with an infected-cell protein having an apparent molecular mass of 87 kDa. The 87-kDa protein was first detected at 6 h postinfection and was expressed as late as 24 h postinfection. No detectable UL28 protein was synthesized in gCB- or gC delta 7B-infected Vero cells.  相似文献   
5.
VP26 is a 12-kDa capsid protein of herpes simplex virus 1. Although VP26 is dispensable for assembly, the native capsid (a T=16 icosahedron) contains 900 copies: six on each of the 150 hexons of VP5 (149 kDa) but none on the 12 VP5 pentons at its vertices. We have investigated this interaction by expressing VP26 in Escherichia coli and studying the properties of the purified protein in solution and its binding to capsids. Circular dichroism spectroscopy reveals that the conformation of purified VP26 consists mainly of beta-sheets (approximately 80%), with a small alpha-helical component (approximately 15%). Its state of association was determined by analytical ultracentrifugation to be a reversible monomer-dimer equilibrium, with a dissociation constant of approximately 2 x 10(-5) M. Bacterially expressed VP26 binds to capsids in the normal amount, as determined by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cryoelectron microscopy shows that the protein occupies its usual sites on hexons but does not bind to pentons, even when available in 100-fold molar excess. Quasi-equivalence requires that penton VP5 must differ in conformation from hexon VP5: our data show that in mature capsids, this difference is sufficiently pronounced to abrogate its ability to bind VP26.  相似文献   
6.
7.
The turnover of [32P]orthophosphate in bovine oocyte phospholipids was studied during the early stages of spontaneous meiotic maturation, and during inhibition of this process by the cAMP phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine (IBMX). Radioactive lipids were separated by TLC and the meiotic stage was determined cytogenetically. Ultrastructure of the nuclear membrane was examined using transmission EM. During the commitment period to meiotic resumption, which precedes germinal vesicle breakdown (GVBD), small localized convolutions appeared in the intact nuclear membrane. This was accompanied by a decrease in [32P]phosphatidic acid (PA) and an increase in [32P]-phosphatidylcholine (PC). This was followed by extensive convolutions, and subsequent dissociation, of the nuclear membrane, concomitant with a tremendous surge in [32P]PC and [32P]phosphatidylethanolamine (PE). The cAMP-mediated maintenance of meiotic arrest involved retention of entire nuclear envelope integrity and total inhibition of the surge in [32P]PC and [32P]PE which accompanied GVBD. The increase in [32P]phosphatidylinositol (PI) associated with all stages of early meiotic resumption was unaffected by IBMX. Microinjection of heparin inhibited GVBD, and injection of inositol 1,4,5-trisphosphate (IP3) overrode IBMX-maintained meiotic arrest in almost 40% of the oocytes. The results suggest that there may be several functions for phospholipid turnover in the regulation of spontaneous meiotic resumption in the bovine oocyte. The first precedes the commitment period, and involves IP3 generation to serve as the primary signal for meiotic resumption. The second occurs concomitant with the commitment period, is unaffected by the level of intracellular cAMP, and is associated with the general turnover of phospholipid. The third is associated with GVBD, and is cAMP-sensitive, and may represent stimulation of de novo synthesis of phospholipid, thereby permitting disruption of the nuclear membrane.  相似文献   
8.
9.
Despite the recent progress in cancer management approaches, the mortality rate of cancer is still growing and there are lots of challenges in the clinics in terms of novel therapeutics. MicroRNAs (miRNA) are regulatory small noncoding RNAs and are already confirmed to have a great role in regulating gene expression level by targeting multiple molecules that affect cell physiology and disease development. Recently, miRNAs have been introduced as promising therapeutic targets for cancer treatment. Regulatory potential of tumor suppressor miRNAs, which enables regulation of entire signaling networks within the cells, makes them an interesting option for developing cancer therapeutics. In this regard, over recent decades, scientists have aimed at developing powerful and safe targeting approaches to restore these suppressive miRNAs in cancerous cells. The present review summarizes the function of miRNAs in tumor development and presents recent findings on how miRNAs have served as therapeutic agents against cancer, with a special focus on tumor suppressor miRNAs (mimics). Moreover, the latest investigations on the therapeutic strategies of miRNA delivery have been presented.  相似文献   
10.
The aim of this study was to investigate the efficacy and mechanism of action of a noninvasive remote ischemic preconditioning (IPC) technique for the protection of multiple distant skeletal muscles against ischemic necrosis (infarction). It was observed in the pig that three cycles of 10-min occlusion and reperfusion in a hindlimb by tourniquet application reduced the infarction of latissimus dorsi (LD), gracilis (GC), and rectus abdominis (RA) muscle flaps by 55%, 60%, and 55%, respectively, compared with their corresponding control (n = 6, P < 0.01) when they were subsequently subjected to 4 h of ischemia and 48 h of reperfusion. This infarct-protective effect of remote IPC in LD muscle flaps was abolished by an intravenous bolus injection of the nonselective opioid receptor antagonist naloxone (3 mg/kg) 10 min before remote IPC and a continuous intravenous infusion (3 mg/kg) during remote IPC and by an intravenous bolus injection of the selective delta 1-opioid receptor antagonist 7-benzylidenealtrexone maleate (3 mg/kg). However, this infarct-protective effect of remote IPC was not affected by an intravenous bolus injection of the ganglionic blocker hexamethonium chloride (20 mg/kg) or the nonspecific adenosine receptor antagonist 8-(p-sulfophenyl)theophylline (10 mg/kg) or by a local intra-arterial injection of the adenosine1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (3 mg/muscle flap) given 10 min before remote IPC. It was also observed that this remote IPC of skeletal muscle against infarction was associated with a slower rate of muscle ATP depletion during the 4 h of sustained ischemia and a reduced muscle neutrophilic myeloperoxidase activity after 1.5 h of reperfusion. These observations led us to speculate that noninvasive remote IPC by brief cycles of occlusion and reperfusion in a pig hindlimb is effective in global protection of skeletal muscle against infarction. This infarct-protective effect is most likely triggered by the activation of opioid receptors in the skeletal muscle, and remote IPC is associated with an energy-sparing effect during sustained ischemia and attenuation of neutrophil accumulation during reperfusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号