首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   4篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2008年   3篇
  2007年   2篇
  2006年   6篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  1999年   1篇
  1998年   1篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
  1980年   1篇
  1978年   2篇
  1975年   1篇
  1974年   3篇
  1970年   1篇
  1967年   1篇
  1960年   1篇
  1954年   2篇
  1952年   2篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
Conceptually, premature initiation of post-wound angiogenesis could interfere with hemostasis, as it relies on fibrinolysis. The mechanisms facilitating orchestration of these events remain poorly understood, however, likely due to limitations in discerning the individual contribution of cells and extracellular matrix. Here, we designed an in vitro Hemostatic-Components-Model (HCM) to investigate the role of the fibrin matrix as protein factor-carrier, independent of its cell-scaffold function. After characterizing the proteomic profile of HCM-harvested matrix releasates, we demonstrate that the key pro-/anti-angiogenic factors, VEGF and PF4, are differentially bound by the matrix. Changing matrix fibrin mass consequently alters the balance of releasate factor concentrations, with differential effects on basic endothelial cell (EC) behaviors. While increasing mass, and releasate VEGF levels, promoted EC chemotactic migration, it progressively inhibited tube formation, a response that was dependent on PF4. These results indicate that the clot’s matrix component initially serves as biochemical anti-angiogenic barrier, suggesting that post-hemostatic angiogenesis follows fibrinolysis-mediated angiogenic disinhibition. Beyond their significance towards understanding the spatiotemporal regulation of wound healing, our findings could inform the study of other pathophysiological processes in which coagulation and angiogenesis are prominent features, such as cardiovascular and malignant disease.  相似文献   
2.
We present measurements of the effective spontaneous curvature of fluid lipid bilayers as a function of trans-bilayer asymmetry. Experiments are performed on micrometer-scale vesicles in sugar solutions with varying species across the membrane. There are two effects leading to a preferred curvature of such a vesicle. The spontaneous curvatures of the two monolayers as well as their area difference combine into an effective spontaneous curvature of the membrane. Our technique for measuring this parameter allows us to use vesicle morphology as a probe for general membrane-solute interactions affecting elasticity. Received: 3 June 1998 / Revised version: 18 August 1998 / Accepted: 21 August 1998  相似文献   
3.
4.
Despite profound expertise and advanced surgical techniques, ischemia-induced complications ranging from wound breakdown to extensive tissue necrosis are still occurring, particularly in reconstructive flap surgery. Multiple experimental flap models have been developed to analyze underlying causes and mechanisms and to investigate treatment strategies to prevent ischemic complications. The limiting factor of most models is the lacking possibility to directly and repetitively visualize microvascular architecture and hemodynamics. The goal of the protocol was to present a well-established mouse model affiliating these before mentioned lacking elements. Harder et al. have developed a model of a musculocutaneous flap with a random perfusion pattern that undergoes acute persistent ischemia and results in ~50% necrosis after 10 days if kept untreated. With the aid of intravital epi-fluorescence microscopy, this chamber model allows repetitive visualization of morphology and hemodynamics in different regions of interest over time. Associated processes such as apoptosis, inflammation, microvascular leakage and angiogenesis can be investigated and correlated to immunohistochemical and molecular protein assays. To date, the model has proven feasibility and reproducibility in several published experimental studies investigating the effect of pre-, peri- and postconditioning of ischemically challenged tissue.  相似文献   
5.
Thin samples adherent to a rigid substrate are considerably less compliant to indentation when compared to specimens that are not geometrically confined. Analytical corrections to this so-called substrate effect exist for various types of indenters but are not applicable when large deformations are possible, as is the case in biological materials. To overcome this limitation, we construct a nonlinear scaling model characterized by one single exponent, which we explore employing a parametric finite element analysis. The model is based on asymptotes of two length scales in relation to the sample thickness, i.e., indentation depth and radius of the contact area. For small indentation depth, we require agreement with analytical, linear models, whereas for large indentation depth and extensive contact area, we recognize similarity to uniaxial deformation, indicating a divergent force required to indent nonlinear materials. In contrast, we find linear materials not to be influenced by the substrate effect beyond first order, implying that nonlinear effects originating from either the material or geometric confinement are clearly separated only in thin samples. Furthermore, in this regime the scaling model can be derived by following a heuristic argument extending a linear model to large indentation depths. Lastly, in a large indentation setting where the contact is small in comparison with sample thickness, we observe nonlinear effects independent of material type that we attribute to a higher-order influence of geometrical confinement. In this regime, we define a scalar as the ratio of strains along principal axes as obtained by comparison with the case of a point force on a half-space. We find this scalar to be in quantitative agreement with the scaling exponent, indicating an approach to distinguish between nonlinear effects in the scaling model. While we conjecture our findings to be applicable to other flat-ended indenters, we focus on the case of a flat-ended cylinder in normal contact with a thin layer. The analytical solution for small indentation associated with this problem has been given by Hayes et al. (J Biomech 5:541–551, 1972), for which we provide a convenient numerical implementation.  相似文献   
6.

Background

Induction of neovascularization by releasing therapeutic growth factors is a promising application of cell-based gene therapy to treat ischemia-related problems. In the present study, we have developed a new strategy based on nucleofection with alternative solution and cuvette to promote collateral growth and re-establishment of circulation in ischemic limbs using double transplantation of gene nucleofected primary cultures of fibroblasts, which were isolated from rat receiving such therapy.

Methods and Results

Rat dermal fibroblasts were nucleofected ex vivo to release bFGF or VEGF165 in a hindlimb ischemia model in vivo. After femoral artery ligation, gene-modified cells were injected intramuscularly. One week post injection, local confined plasmid expression and transient distributions of the plasmids in other organs were detected by quantitative PCR. Quantitative micro-CT analyses showed improvements of vascularization in the ischemic zone (No. of collateral vessels via micro CT: 6.8±2.3 vs. 10.1±2.6; p<0.05). Moreover, improved collateral proliferation (BrdU incorporation: 0.48±0.05 vs. 0.57±0.05; p<0.05) and increase in blood perfusion (microspheres ratio: gastrocnemius: 0.41±0.10 vs. 0.50±0.11; p<0.05; soleus ratio: soleus: 0.42±0.08 vs. 0.60±0.08; p<0.01) in the lower hindlimb were also observed.

Conclusions

These results demonstrate the feasibility and effectiveness of double transplantation of gene nucleofected primary fibroblasts in producing growth factors and promoting the formation of collateral circulation in ischemic hindlimb, suggesting that isolation and preparation of gene nucleofected cells from individual accepting gene therapy may be an alternative strategy for treating limb ischemia related diseases.  相似文献   
7.
Clinical efficacy of the antiplatelet drug clopidogrel is hampered by its variable biotransformation into the active metabolite. The variability in the clinical response to clopidogrel treatment has been attributed to genetic factors, but the specific genes and mechanisms underlying clopidogrel bioactivation remain unclear. Using in vitro metabolomic profiling techniques, we identified paraoxonase-1 (PON1) as the crucial enzyme for clopidogrel bioactivation, with its common Q192R polymorphism determining the rate of active metabolite formation. We tested the clinical relevance of the PON1 Q192R genotype in a population of individuals with coronary artery disease who underwent stent implantation and received clopidogrel therapy. PON1 QQ192 homozygous individuals showed a considerably higher risk than RR192 homozygous individuals of stent thrombosis, lower PON1 plasma activity, lower plasma concentrations of active metabolite and lower platelet inhibition. Thus, we identified PON1 as a key factor for the bioactivation and clinical activity of clopidogrel. These findings have therapeutic implications and may be exploited to prospectively assess the clinical efficacy of clopidogrel.  相似文献   
8.
9.
Actin-based cell motility and force generation are central to immune response, tissue development, and cancer metastasis, and understanding actin cytoskeleton regulation is a major goal of cell biologists. Cell spreading is a commonly used model system for motility experiments – spreading fibroblasts exhibit stereotypic, spatially-isotropic edge dynamics during a reproducible sequence of functional phases: 1) During early spreading, cells form initial contacts with the surface. 2) The middle spreading phase exhibits rapidly increasing attachment area. 3) Late spreading is characterized by periodic contractions and stable adhesions formation. While differences in cytoskeletal regulation between phases are known, a global analysis of the spatial and temporal coordination of motility and force generation is missing. Implementing improved algorithms for analyzing edge dynamics over the entire cell periphery, we observed that a single domain of homogeneous cytoskeletal dynamics dominated each of the three phases of spreading. These domains exhibited a unique combination of biophysical and biochemical parameters – a motility module. Biophysical characterization of the motility modules revealed that the early phase was dominated by periodic, rapid membrane blebbing; the middle phase exhibited continuous protrusion with very low traction force generation; and the late phase was characterized by global periodic contractions and high force generation. Biochemically, each motility module exhibited a different distribution of the actin-related protein VASP, while inhibition of actin polymerization revealed different dependencies on barbed-end polymerization. In addition, our whole-cell analysis revealed that many cells exhibited heterogeneous combinations of motility modules in neighboring regions of the cell edge. Together, these observations support a model of motility in which regions of the cell edge exhibit one of a limited number of motility modules that, together, determine the overall motility function. Our data and algorithms are publicly available to encourage further exploration.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号