首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serum paraoxonase (PON1) is a HDL-associated enzyme exhibiting potentially antiatherogenic properties. Here, we examined the common PON1-192R/Q human polymorphism. Despite numerous studies, the effect of this polymorphism on the antiatherogenic potential of PON1 is yet unresolved. Our structural model suggests that amino acid 192 constitutes part of the HDL-anchoring surface and active site of PON1. Based on our findings that PON1 is an interfacially activated lipolactonase that selectively binds HDL carrying apolipoprotein A-I (apoA-I) and is thereby greatly stabilized and catalytically activated, we examined the interaction of the PON1-192 isozymes with reconstituted HDL-apoA-I particles. We found that PON1 position 192 is indeed involved in HDL binding. The PON1-192Q binds HDL with a 3-fold lower affinity than the R isozyme and consequently exhibits significantly reduced stability, lipolactonase activity, and macrophage cholesterol efflux. We also observed the lower affinity and stability of the 192Q versus the 192R isozyme in sera of individuals belonging to the corresponding genotypes. The observed differences in the properties of PON1-192R/Q isozymes provide a basis for further analysis of the contribution of the 192R/Q polymorphism to the susceptibility to atherosclerosis, although other factors, such as the overall levels of PON1, may play a more significant role.  相似文献   

2.
Detoxication of organophosphorus (OP) compounds is affected by genetic and environmental modulation of a number of enzymes involved in the process. For organophosphorothioate insecticides, different P450 isozymes and variants carry out two reactions that have quite different consequences; (1) they bioactivate their parent compounds to highly toxic oxon forms that are many times more toxic than the parent compounds, and (2) concurrently, they dearylate the parent OP compounds, generating much less toxic metabolites. The ratios at which these different P450s carry out bioactivation versus dearylation differ among the P450 isozymes. The detoxication of the oxon forms of diazinon and chlorpyrifos is achieved by hydrolysis to the respective aromatic alcohols and diethyl phosphates primarily by paraoxonase 1 (PON1), a plasma enzyme tightly associated with high-density lipoprotein particles and also found in liver. Stoichiometric binding to other targets also contributes to the detoxication of these oxons. PON1 is polymorphically distributed in human populations with an amino acid substitution (Gln/Arg) at position 192 of this 354-amino acid protein (the initiator Met residue is cleaved on maturation) that determines the catalytic efficiency of hydrolysis of some substrates. In addition to the variable catalytic efficiency determined by the position 192 amino acid, protein levels of PON1 vary by as much as 15-fold among individuals with the same PON1(192) genotype (Q/Q; Q/R; R/R). The generation of PON1 null mice and transgenic mice, expressing each of the human PON1(192) alloforms in place of mouse PON1, has allowed for the examination of the physiological function of the PON1(192) alloforms in OP detoxication. Sensitivity to diazoxon exposure is primarily determined by the plasma level of PON1, whereas for chlorpyrifos oxon exposure, both the plasma PON1 level and the position 192 amino acid are important--PON1(R192) is more efficient in inactivating chlorpyrifos oxon than is PON1(Q192). The availability of PON1 null mice provides an opportunity to examine the contribution of other enzymes in the OP detoxication pathways without PON1 interference.  相似文献   

3.
Abstract

Background

The metabolic syndrome (MetS) is a complex of multiple risk factors that contribute to the onset of cardiovascular disorder, including lowered levels of high-density lipoprotein (HDL) and abdominal obesity. Smoking, mood disorders, and oxidative stress are associated with the MetS. Paraoxonase (PON)1 is an antioxidant bound to HDL, that is under genetic control by functional polymorphisms in the PON1 Q192R coding sequence.

Aims and methods

This study aimed to delineate the associations of the MetS with plasma PON1 activity, PON1 Q192R genotypes, smoking, and mood disorders (major depression and bipolar disorder), while adjusting for HDL cholesterol, body mass index, age, gender, and sociodemographic data. We measured plasma PON1 activity and serum HDL cholesterol and determined PON1 Q192R genotypes through functional analysis in 335 subjects, consisting of 97 with and 238 without MetS. The severity of nicotine dependence was measured using the Fagerström Nicotine Dependence Scale.

Results

PON1 Q192R functional genotypes and PON1 Q192R genotypes by smoking interactions were associated with the MetS. The QQ and QR genotypes were protective against MetS while smoking increased metabolic risk in QQ carriers only. There were no significant associations between PON1 Q192R genotypes and smoking by genotype interactions and obesity or overweight, while body mass index significantly increased MetS risk. Smoking and especially severe nicotine dependence are significantly associated with the MetS although these effects were no longer significant after considering the effects of the smoking by PON1 Q192R genotype interaction. The MetS was not associated with mood disorders, major depression or bipolar disorder.

Discussion

PON1 Q192R genotypes and genotypes by smoking interactions are risk factors for the MetS that together with lowered HDL and increased body mass and age contribute to the MetS.  相似文献   

4.
The aim of this study was to examine the relationship between the L55M and Q192R paraoxonase (PON1) polymorphisms and obesity in a population of adult Mexican workers. The study population included 127 adult individuals from the Universidad Autónoma del Estado de Morelos, ranging in age from 20 to 56 years and representing both sexes. Based on body mass index, 63 individuals were classified as obese and 64 as normal weight. The PON1-Q192R and PON1-L55M polymorphisms were determined by restriction fragment length polymorphism PCR analysis. Both arylesterase and paraoxonase activity levels were similar in both groups, whereas systolic pressure, triglyceride, total cholesterol, low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, glucose, and insulin levels were higher in the obese group than in the normal-weight group (P < 0.05). An exception was the high-density lipoprotein cholesterol (HDL-C) levels, which were lower in the obese group (P < 0.05). Although the PON1-Q192R polymorphism was not associated with either group, the frequency of the homozygous L genotype for the PON1-L55M polymorphism was higher in the obese group than in the normal-weight group (P < 0.05). In conclusion, this study established a positive association between the PON1-L55M homozygous L genotype and obesity.  相似文献   

5.
Autism spectrum disorders (ASD) comprise a complex and heterogeneous group of conditions of unknown aetiology, characterized by significant disturbances in social, communicative and behavioural functioning. Recent studies suggested a possible implication of the high-density lipoprotein associated esterase/lactonase paraoxonase 1 (PON1) in ASD. In the present study, we aimed at investigating the PON1 status in a group of 50 children with ASD as compared to healthy age and sex matched control participants. We evaluated PON1 bioavailability (i.e. arylesterase activity) and catalytic activity (i.e. paraoxonase activity) in plasma using spectrophotometric methods and the two common polymorphisms in the PON1 coding region (Q192R, L55M) by employing Light Cycler real-time PCR. We found that both PON1 arylesterase and PON1 paraoxonase activities were decreased in autistic patients (respectively, P < 0.001, P < 0.05), but no association with less active variants of the PON1 gene was found. The PON1 phenotype, inferred from the two-dimensional enzyme analysis, had a similar distribution in the ASD group and the control group. In conclusion, both the bioavailability and the catalytic activity of PON1 are impaired in ASD, despite no association with the Q192R and L55M polymorphisms in the PON1 gene and a normal distribution of the PON1 phenotype.  相似文献   

6.
Paraoxonase (PON1) is an A-esterase capable of hydrolysing the active metabolites (oxons) of a number of organophosphorus (OP) insecticides such as parathion, diazinon and chlorpyrifos. PON1 activity is highest in liver and plasma, and among animal species significant differences exist, with birds and rabbits displaying very low and high activity, respectively. Human PON1 has two polymorphisms in the coding region (Q192R and L55M) and five polymorphisms in the promoter region. The Q192R polymorphism imparts different catalytic activity toward some OP substrates, while the polymorphism at position -108 (C/T) is the major contributor to differences in the level of PON1 expression. Animal studies have shown that PON1 is an important determinant of OP toxicity, with animal species with a low PON1 activity having an increased sensitivity to OPs. Administration of exogenous PON1 to rats or mice protects them from the toxicity of OPs. PON1 knockout mice display a high sensitivity to the toxicity of diazoxon and chlorpyrifos oxon, but not paraoxon. In vitro assayed catalytic efficiencies of purified PON192 isoforms for hydrolysis of specific oxon substrates accurately predict the degree of in vivo protection afforded by each isoform. Low PON1 activity may also contribute to the higher sensitivity of newborns to OP toxicity.  相似文献   

7.
An analytical method for determining paraoxonase activity against sarin, soman and VX was established. We used capillary electrophoresis to measure directly the hydrolysis products: alkyl methylphosphonates. After enzymatic reaction of human serum paraoxonase (PON1) with nerve gas, substrate was removed with dichloromethane, and alkyl methylphoshphonates were quantified by capillary electrophoresis of reversed osmotic flow using cationic detergent and sorbic acid. This method was applied to the characterization of human serum PON1 polymorphism for nerve gas hydrolytic activity in the coding region (Q192R). PON1-192 and PON1-55 genotypes were determined by their gel electrophoretic fragmentation pattern with restriction enzymes after polymerase chain reaction (PCR) of blood leukocyte genomic DNA. Frequencies of genotypes among 63 members of our institutes with PON1-192 and PON1-55 were 9.5% (192QQ), 30.1% (192QR) and 44.4% (192RR), and 82.5% (55LL), 17.5% (55LM) and 0% (55MM), respectively. 192Q and 192R enzymes were purified from the respective genotype human plasma, using blue agarose affinity chromatography and diethyl amino ethane (DEAE) anion exchange chromatography. Vmax and Km were measured using Lineweaver-Burk plots for hydrolytic activities against sarin, soman and VX at pH 7.4 and 25 °C. For sarin and soman, the Vmax for 192Q PON1 were 3.5- and 1.5-fold higher than those for 192R PON1; and kcat/Km for 192Q PON1 were 1.3- and 2.8-fold higher than those for 192R PON1. For VX, there was little difference in Vmax and kcat/Km between 192Q and 192R PON1, and VX hydrolyzing activity was significantly lower than those for sarin and soman. PON1 hydrolyzed sarin and soman more effectively than paraoxon.  相似文献   

8.
Paraoxonase 1 (PON 1) is a high‐density lipoprotein (HDL)‐associated enzyme with antioxidant function protecting low‐density lipoprotein (LDL) from oxidation. PON 1 has two amino acid polymorphisms in coding region; L/M 55 and Q/R 192. These polymorphisms modulate paraoxonase activity of the enzyme. PON 1 activity decreases in coronary artery disease (CAD). In the present study, distribution of PON 1 L/M 55 and Q/R 192 polymorphisms and the effect of these polymorphisms on the activities of PON 1, and on the severity of CAD in 277 CAD (+) patient and 92 CAD (?) subjects were examined. PON 1 L/M 55 and Q/R 192 genotypes were determined by PCR, RFLP and agarose gel electrophoresis techniques. Genotype distributions and allele frequencies for PON 1 Q/R 192 polymorphism were not significantly different between controls and CAD (+) patient group (p > 0.05), but in genotype and allele distribution of PON 1 L/M55 polymorphism, there was significantly difference among groups (p < 0.05). Genotype distributions for both polymorphisms were not significantly different between subgroups of single‐vessel disease (SVD), double‐vessel disease (DVD) and triple‐vessel disease (TVD). Serum PON 1 activity was lower in CAD (+) group than in controls and this was also statistically significant (p < 0.001). In both groups, the highest PON activities were detected in LL and RR genotypes. In summary, our results suggest that there is an association between the PON 1 L/M 55 polymorphism of paraoxonase and CAD in Turkish patients but not with PON 1 Q/R 192 polymorphism. However, it is hard to correlate these polymorphisms and severity of CAD. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A metabolite of homocysteine (Hcy), the thioester Hcy thiolactone, damages proteins by modifying their lysine residues which may underlie Hcy-associated cardiovascular disease in humans. A protein component of high density lipoprotein, Hcy thiolactonase (HTase) hydrolyzes thiolactone to Hcy. Thiolactonase is a product of the polymorphic PON1 gene, also involved in detoxification of organophospates and implicated in cardiovascular disease. Polymorphism in PON1 affects the detoxifying activity of PON1 in a substrate-dependent manner. However, how PON1 polymorphism affects HTase activity is unknown. Here we report a strong association between the thiolactonase activity and PON1 genotype in human populations. High thiolactonase activity was associated with L55 and R192 alleles, more frequent in blacks than in whites. Low thiolactonase activity was associated with M55 and Q192 alleles, more frequent in whites than in blacks. High thiolactonase activity afforded better protection against protein homocysteinylation than low thiolactonase activity. These results suggest that variations in HTase may play a role in Hcy-associated cardiovascular disease.  相似文献   

10.
Abstract

Paroxonase 1 displays multiple physiological activities that position it as a putative player in the pathogenesis of neurological disorders. Here we reviewed the literature focusing on the role of paraoxonase 1 (PON1) as a factor in the risk of stroke and the major neurodegenerative diseases. PON1 activity is reduced in stroke patients, which significantly correlates inversely with carotid and cerebral atherosclerosis. The presence of the R allele of the Q192R PON1 polymorphism seems to potentiate this risk for stroke. PON1 exerts peroxidase activities that may be important in neurodegenerative disorders associated with oxidative stress. PON1 is also a key detoxifier of organophosphates and organophosphate exposure has been linked to the development of neurological disorders in which acetylcholine plays a significant role. In Parkinson's disease most of the studies suggest no participation of either L55M or the Q192R polymorphisms in its pathogenesis. However, many studies suggest that the MM55 PON1 genotype is associated with a higher risk for Parkinson's disease in individuals exposed to organophosphates. In Alzheimer's disease most studies have failed to find any association between PON1 polymorphisms and the development of the disease. Some studies show that PON1 activity is decreased in patients with Alzheimer's disease or other dementias, suggesting a possible protective role of PON1. No links between PON1 polymorphisms or activity have been found in other neurodegenerative diseases such as multiple sclerosis and amyotrophic lateral sclerosis. PON1 is a potential player in the pathogenesis of several neurological disorders. More research is warranted to ascertain the precise pathogenic links and the prognostic value of its measurement in neurological patients.  相似文献   

11.
The platelet-activating factor acetylhydrolase activity associated with high density lipoprotein (HDL-PAF-AH) may substantially contribute to the antioxidant, anti-inflammatory, and overall antiatherogenic effects of HDL. Two enzymes associated with HDL express PAF-AH catalytic activity, PAF-AH itself and paraoxonase-1 (PON1). The relative contribution of these enzymes in the expression of PAF-AH activity on HDL remains to be established. We investigated whether the PON1 polymorphisms (M55L and Q192R) or the PAF-AH polymorphism V379A could affect the PAF-AH activity associated with HDL in both normolipidemic and dyslipidemic (type IIA and IIB) populations. We show for the first time that the PON1 M55L polymorphism significantly affects the HDL-PAF-AH activity in all studied groups, the PON1 L55L individuals having lower enzyme activity compared to those having 1 M and 2 M alleles. No differences in the HDL content concerning the major apolipoprotein and lipid constituents were observed between individuals carrying the PON1 L55L and those with the M55M polymorphism. Our results provide evidence that PON1 significantly contributes to the pool of HDL-PAF-AH activity in human plasma, and suggest that the low PAF-AH activity in HDL carrying the PON1 L alloenzyme may be an important factor contributing to the low efficiency of this HDL in protecting LDL against lipid peroxidation.  相似文献   

12.
Clopidogrel is an antiplatelet prodrug that is recommended to reduce the risk of recurrent thrombosis in coronary artery disease (CAD) patients. Paraoxonase 1 (PON1) is suggested to be a rate-limiting enzyme in the conversion of 2-oxo-clopidogrel to active thiol metabolite with inconsistent results. Here, we sought to determine the associations of CYP2C19 and PON1 gene polymorphisms with clopidogrel response and their role in ADP-induced platelet aggregation. Clopidogrel response and platelet aggregation were determined using Multiplate aggregometer in 211 patients with established CAD who received 75 mg clopidogrel and 75–325 mg aspirin daily for at least 14 days. Polymorphisms in CYP2C19 and PON1 were genotyped and tested for association with clopidogrel resistance. Linkage disequilibrium (LD) and their epistatic interaction effects on ADP-induced platelet aggregation were analysed. The prevalence of clopidogrel resistance in this population was approximately 33.2% (n = 70). The frequencies of CYP2C19*2 and *3 were significantly higher in non-responder than those in responders. After adjusting for established risk factors, CYP2C19*2 and *3 alleles independently increased the risk of clopidogrel resistance with adjusted ORs 2.94 (95%CI, 1.65–5.26; p<0.001) and 11.26 (95%CI, 2.47–51.41; p = 0.002, respectively). Patients with *2 or *3 allele and combined with smoking, diabetes and increased platelet count had markedly increased risk of clopidogrel resistance. No association was observed between PON1 Q192R and clopidogrel resistance (adjusted OR = 1.13, 95%CI, 0.70–1.82; p = 0.622). Significantly higher platelet aggregation values were found in CYP2C19*2 and *3 patients when compared with *1/*1 allele carriers (p = 1.98×10−6). For PON1 Q192R genotypes, aggregation values were similar across all genotype groups (p = 0.359). There was no evidence of gene-gene interaction or LD between CYP2C19 and PON1 polymorphisms on ADP-induced platelet aggregation. Our findings indicated that only CYP2C19*2 and *3 alleles had an influence on clopidogrel resistance. The risk of clopidogrel resistance increased further with smoking, diabetes, and increased platelet count.  相似文献   

13.
The purpose of the present study was to investigate the distribution of PON1 Q192R and L55M polymorphisms and activities in a North African population and to determine their association with cardiovascular complications. The prevalence of the QQ, QR, RR, LL, LM, and MM genotypes in the study population was 55.4%, 34.09%, 9.83%, 41.97%, 48.20%, and 9.83% respectively. The Q, R, L, and M alleles had a gene frequency of 0.755, 0.245, 0.67, and 0.33, respectively. The PON1 192 RR genotype was significantly more prevalent among ACS patients than among healthy subjects. There was a 4.33-fold increase in the risk of ACS in subjects presenting the PON1 192 RR genotype compared to those with the QQ genotype (OR=4.33; 95% CI=1.27–17.7). There was a significantly different distribution of PON1 L55M in the ACS patient groups (UA, STEMI, NSTEMI). Moreover, individuals presenting the PON1 55MM genotype present a higher risk for ACS than those with LL genotype (OR=3.69; 95% CI=1.61–11.80). Paraoxonase activities were significantly lower in coronary patients than in healthy subjects. The decrease in PON1 activity was inversely correlated with the number of concomitant risk factors for CVD (r=0.57, p<0.0001). The results of the present study suggested that the PON1 R and M alleles may play a role in the pathogenesis of cardiac ischemia in our North African population and that a decrease in PON1 activity may be a valuable marker for monitoring the development of the atherosclerosis process and the associated cardiovascular complications.  相似文献   

14.

AIMS AND OBJECTIVES:

The present study was evaluated the atheroprotective potential of paraoxonase1 (PON1) and its Q192R polymorphism, to determine whether this polymorphism, which is responsible for differential PON1 activity plays any role in the pathogenesis, severity and extent of coronary artery disease (CAD).

MATERIALS AND METHODS:

This hospital-based cross-sectional study investigated 60 diagnosed cases of CAD and 60 age and gender matched controls. All were assessed for serum PON1 activity, PON1 Q192R polymorphism and for classical cardiovascular risk factors. Individual serum phenotyping for PON1 Q192R polymorphism was determined by double substrate hydrolysis assay. Severity of CAD was assessed by the length of intensive cardiac care unit (ICCU) stay.

RESULTS:

Serum PON1 activity is significantly reduced in cases of CAD (92.6 ± 31.13 IU/L when compared with controls (105.26 ± 32.53 IU/L). Furthermore, serum arylesterase activity is reduced in CAD patients (90.31 ± 23.26 kU) when compared with the control subjects (101.61 ± 28.68 kU). Serum PON1 and arylesterase activities are significantly negatively correlated with the length of ICCU stay (r = −393 and r = −374 respectively). There is no significant difference in the occurrence of CAD and length of ICCU stay among the PON1 phenotypes (P = 0.92). Logistic regression analysis after adjustment of established risk factors revealed no significant association between CAD risk and PON1 Q192R polymorphism (odds ratios: 1.179 [95% confidence intervals: 0.507-2.744], P = 0.702).

SUMMARY AND CONCLUSIONS:

The current study demonstrates that the activity of the PON1 enzyme may be more important factor than the PON1 Q192R polymorphism in the severity and extent of CAD.  相似文献   

15.
Serum paraoxonase 1 (PON1) function has been associated with human cardiovascular disease. The projected mechanism postulates interaction of PON1 with lipoproteins and insulin signaling resulting in alterations in lipid homeostasis. Recently, PON2 was shown to directly regulate triglyceride accumulation in macrophages and PON1 was detected in the interstitial space of adipocytes. The aims of the present study were a) to examine the relationship of the PON1 function with serum parameters related to lipid homeostasis, and b) to examine a possible role of PON1 in the regulation of lipid composition in the human adipose tissue. Two important genetic variations with functional impact on PON1 activity in humans are the Q192R and the L55M. The present study evaluated the impact of the Q192R and the L55M polymorphisms in a cross-section of the population on the island of Crete, as regards to PON1 activity, plasma lipids/lipoproteins, parameters of the metabolic syndrome, and the fatty acid composition of the adipose tissue. We detected a significant association of the polymorphisms with blood pressure, fasting blood glucose, triglycerides, apolipoprotein B, serum iron, and homocysteine. Furthermore, a novel function is suggested for PON1 on the fatty acid composition in the adipose tissue through the positive association of the R allele with saturated fatty acid and of the Q allele with 20:5n3 fatty acid deposition.  相似文献   

16.
Human serum paraoxonase 1 (PON1) is a HDL-associated enzyme that catalyzes the hydrolysis of a variety of aromatic carboxylic acid esters and several organophosphates. Recently it has been suggested that a physiological substrate of serum PON1 is homocysteine thiolactone which is a putative risk factor in atherosclerosis. In this study, human (192)Q and (192)R PON1 isoenzymes were purified from the respective phenotype human serum, using a protocol consisting of ammonium sulfate precipitation and four chromatography steps: gel filtration, ion-exchange, non-specific affinity, and a second ion-exchange. Using paraoxon as substrate, overall purification fold was found as 742 for (192)R PON1 and 590 for (192)Q PON1. The final purified enzymes were shown as single protein bands close to 45kDa on SDS-PAGE and confirmed by Western blot. Substrate kinetics were studied with phenyl acetate, paraoxon and homocysteine thiolactone. Both PON1 isoenzymes showed mixed type inhibition with phenyl acetate. K(m) values of (192)Q and (192)R PON1 for homocysteine thiolactone were 23.5mM and 22.6mM respectively. For (192)R PON1, the V(max) was 2.5-fold and k(cat)/K(m) was 2.6-fold higher than those for (192)Q PON1 when homocysteine thiolactone is used as substrate. The present data suggest that defining (192)Q and (192)R PON1 isoforms could be a good predictor and prognostic marker in the cardiovascular risk assessment.  相似文献   

17.
The pathogenesis of nasal polyps is not completely understood. Oxidative damage contributes to polyp formation in the nasal mucosa. The paraoxonase 1 (PON1) enzyme is an important liver enzyme with high antioxidant activity. In this study, we investigated the correlation between Q192R genotypic polymorphism of the PON1 enzyme and nasal‐polyp disease. The study examined 62 nasal‐polyp patients and 88 controls. PON1 Q192R polymorphism was determined using polymerase chain reaction‐restriction fragment length polymorphism. The genotype distribution of the PON1 gene was significantly different between nasal‐polyp patients (QQ = 69.35%, QR = 25.81%, RR = 4.83%) and healthy controls (QQ = 52.27%, QR = 44.31%, RR = 3.40%). Our results suggest that the PON1 QQ genotype (odds ratio [OR] = 2.066, P = .036) is associated with a higher risk of developing the nasal‐polyp disease while QR genotype (OR = 0.437, P = .021) showed a lower risk.  相似文献   

18.
We recently reported that oxidative stress is involved in the pathogenesis of coronary spasm. We hypothesized that oxidative-stress-related genetic factors and certain polymorphisms in the paraoxonase gene (PON1) and platelet-activating factor acetylhydrolase (PAF-AH) might influence the pathogenesis of coronary spasm. We therefore examined the possible association between the PON1 Q192R or PAF-AH V279F polymorphisms and coronary spasm in 214 patients with coronary spasm and 212 control subjects. Genotypes were determined by polymerase chain reaction/restriction fragment length polymorphism analysis. The incidence of the PON1-192R allele was significantly higher in the coronary spasm group than in the control group (65% vs 53%; P=0.0005). The PAF-AH-279F allele was not associated with coronary spasm (15% vs. 16%; P=0.8781). Multiple logistic regression analysis with forward stepwise selection involving the PON1-192R allele and the environmental risk factors revealed that the most predictive independent risk factor for coronary spasm was the PON1-192R allele (significance=0.0016, OR=2.52), followed by cigarette smoking (significance=0.0007, OR=2.01). We also measured plasma levels of TBARS (thiobarbituric acid-reactive substances) as a marker of oxidative stress. TBARS levels were higher in R/R types than in Q/Q types (2.115+/-0.086 nmol/ml [ n=25] vs 1.676+/-0.102 nmol/ml [ n=11], P<0.01). Thus, there is a significant association between the PON1-192R allele and coronary spasm; the PON1-192R allele may play an important role in the genesis of coronary spasm, probably by attenuating the suppression of oxidative stress.  相似文献   

19.
Human HDL-associated paraoxonase (PON1) hydrolyzes a number of toxic organophosphorous compounds and reduces oxidation of LDLs and HDLs. These properties of PON1 account for its ability to protect against pesticide poisonings and atherosclerosis. PON1 also hydrolyzes a number of lactone and cyclic-carbonate drugs. Among individuals in a population, PON1 levels vary widely. We previously identified three polymorphisms in the PON1 regulatory region that affect expression levels in cultured human hepatocytes. In this study, we determined the genotypes of three regulatory-region polymorphisms for 376 white individuals and examined their effect on plasma-PON1 levels, determined by rates of phenylacetate hydrolysis. The -108 polymorphism had a significant effect on PON1-activity level, whereas the -162 polymorphism had a lesser effect. The -909 polymorphism, which is in linkage disequilibrium with the other sites, appears to have little or no independent effect on PON1-activity level in vivo. Other studies have found that the L55M polymorphism in the PON1-coding region is associated with differences in both PON1-mRNA and PON1-activity levels. The results presented here indicate that the L55M effect of lowered activity is not due to the amino acid change but is, rather, largely due to linkage disequilibrium with the -108 regulatory-region polymorphism. The codon 55 polymorphism marginally appeared to account for 15.3% of the variance in PON1 activity, but this dropped to 5% after adjustments for the effects of the -108 and Q192R polymorphisms were made. The -108C/T polymorphism accounted for 22.8% of the observed variability in PON1-expression levels, which was much greater than that attributable to the other PON1 polymorphisms. We also identified four sequence differences in the 3' UTR of the PON1 mRNA.  相似文献   

20.
HDL-associated paraoxonase type 1 (PON1) can protect LDL and HDL against oxidative modification in vitro and therefore may protect against cardiovascular disease. We investigated the effects of PON1 levels, activity, and genetic variation on high density lipoprotein-cholesterol (HDL-C) levels, circulating oxidized LDL (OxLDL), subclinical inflammation [high-sensitive C-reactive protein (Hs-CRP)], and carotid atherosclerosis. PON1 genotypes (L55M, Q192R, -107C/T, -162A/G, -824G/A, and -907G/C) were determined in 302 patients with familial hypercholesterolemia. PON1 activity was monitored by the hydrolysis rate of paraoxon, diazoxon, and phenyl acetate. PON1 levels, OxLDL, and Hs-CRP were determined using an immunoassay. The genetic variants of PON1 that were associated with high levels and activity of the enzyme were associated with higher HDL-C levels (P values for trend: 0.008, 0.020, 0.042, and 0.037 for L55M, Q192R, -107C/T, and -907G/C, respectively). In addition to the PON1 genotype, there was also a positive correlation between PON1 levels and activity and HDL-C (PON1 levels: r = 0.37, P < 0.001; paraoxonase activity: r = 0.23, P = 0.01; diazoxonase activity: r = 0.29, P < 0.001; arylesterase activity: r = 0.19, P = 0.03). Our observations support the hypothesis that both PON1 levels and activity preserve HDL-C in plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号