首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10512篇
  免费   657篇
  国内免费   30篇
  2023年   111篇
  2022年   186篇
  2021年   521篇
  2020年   362篇
  2019年   466篇
  2018年   502篇
  2017年   348篇
  2016年   498篇
  2015年   557篇
  2014年   661篇
  2013年   834篇
  2012年   870篇
  2011年   763篇
  2010年   457篇
  2009年   370篇
  2008年   462篇
  2007年   466篇
  2006年   400篇
  2005年   399篇
  2004年   311篇
  2003年   255篇
  2002年   235篇
  2001年   113篇
  2000年   99篇
  1999年   81篇
  1998年   56篇
  1997年   31篇
  1996年   33篇
  1995年   42篇
  1994年   26篇
  1993年   31篇
  1992年   48篇
  1991年   43篇
  1990年   46篇
  1989年   47篇
  1988年   46篇
  1987年   36篇
  1986年   35篇
  1985年   39篇
  1984年   36篇
  1983年   28篇
  1982年   22篇
  1981年   26篇
  1980年   13篇
  1979年   18篇
  1978年   20篇
  1977年   15篇
  1976年   22篇
  1975年   18篇
  1967年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Characterization of host-pathogen interactions is a fundamental approach in microbiological and immunological oriented disciplines. It is commonly accepted that host cells start to change their phenotype after engulfing pathogens. Techniques such as real time PCR or ELISA were used to characterize the genes encoding proteins that are associated either with pathogen elimination or immune escape mechanisms. Most of such studies were performed in vitro using primary host cells or cell lines. Consequently, the data generated with such approaches reflect the global RNA expression or protein amount recovered from all cells in culture. This is justified when all host cells harbor an equal amount of pathogens under experimental conditions. However, the uptake of pathogens by phagocytic cells is not synchronized. Consequently, there are host cells incorporating different amounts of pathogens that might result in distinct pathogen-induced protein biosynthesis. Therefore, we established a technique able to detect and quantify the number of pathogens in the corresponding host cells using immunofluorescence-based high throughput analysis. Paired with multicolor staining of molecules of interest it is now possible to analyze the infection profile of host cell populations and the corresponding phenotype of the host cells as a result of parasite load.  相似文献   
2.
We evaluated the relationship between pre-treatment positron emission tomography (PET) using the hypoxic tracer 18F-[2-(2-nitro-1-H-imidazol-1-yl)-N-(2,2,3,3,3- pentafluoropropyl) acetamide] (18F-EF5) and the response of preclinical tumor models to a range of fractionated radiotherapies. Subcutaneous HT29, A549 and RKO tumors grown in nude mice were imaged using 18F-EF5 positron emission tomography (PET) in order to characterize the extent and heterogeneity of hypoxia in these systems. Based on these results, 80 A549 tumors were subsequently grown and imaged using 18F-EF5 PET, and then treated with one, two, or four fraction radiation treatments to a total dose of 10–40 Gy. Response was monitored by serial caliper measurements of tumor volume. Longitudinal post-treatment 18F-EF5 PET imaging was performed on a subset of tumors. Terminal histologic analysis was performed to validate 18F-EF5 PET measures of hypoxia. EF5-positive tumors responded more poorly to low dose single fraction irradiation relative to EF5-negative tumors, however both groups responded similarly to larger single fraction doses. Irradiated tumors exhibited reduced 18F-EF5 uptake one month after treatment compared to control tumors. These findings indicate that pre- treatment 18F-EF5 PET can predict the response of tumors to single fraction radiation treatment. However, increasing the number of fractions delivered abrogates the difference in response between tumors with high and low EF5 uptake pre-treatment, in agreement with traditional radiobiology.  相似文献   
3.
4.
5.
6.
Osteoblast-like cells possess Na-dependent transporters which accumulate orthophosphate (Pi) from the extracellular medium. This may be important in bone formation. Here we describe parallel measurements of Pi uptake and cellular [Pi] in such cells from the rat (UMR 106–01 and UMR 106–06) and human (OB), and in non-osteoblastic human fibroblasts (Detroit 532 (DET)). In UMR 106–01, cellular [Pi] was weakly dependent on extracellular [Pi] and higher than expected from passive transport alone. [32Pi]-uptake was inhibited by Na deprivation, but paradoxically increased on K deprivation. With Na, 87 per cent of cellular 32P was found in organic phosphorus pools after only 5 min. Na deprivation also decreased cellular [Pi], in both UMR 106–01 and DET, but the decrease was smaller than that in [32Pi]-uptake. Ouabain decreased [32Pi]-uptake and cellular [Pi] in DET, but not in UMR 106–01. Regulation of cellular [Pi] is therefore at least partly dependent on Na/Pi co-transport, but this does not seem to be an exclusive property of osteoblasts.  相似文献   
7.
In the present study, we compared the response to salinity of three plants from Brittany coast with contrasted ecological status: Limonium latifolium (salt marshes), Matricaria maritima (beach tops and sand dunes) and Crambe maritima (fixed dunes). Under controlled glasshouse conditions, the growth of the three plants decreased with increasing external salinity. L. latifolium and C. maritima exhibited the highest and lowest resistance to severe salt stress (400 mM), respectively. M. maritima could be considered as an intermediate species, since it tolerated salinity up to 200 mM. The same observation could be made with sodium absorption and acuumulation in plant tissues, the most tolerant species (L. latifolium being the least Na accumulator. Hydrogen peroxide (H2O2) and malondialdehyde (MDA), commonly produced in conditions of stress, accumulated significantly in salt treated C. maritima and M. maritima while not in the tolerant L. latifolium. The latter used glutathione reductase to maintain constant H2O2 levels under salt stress while peroxidases were very low and ascorbate peroxidase did not respond to salinity stimulation. The medium tolerant halophyte M. maritima used peroxidases to protect from NaCl-induced H2O2, while the sensitive C. maritima failed to detoxify H2O2 despite a sharp increase in catalase activity. Results showed that the three coastal species differ in resistance to salinity. They also suggested that the level of plant resistance to salinity could be attributed to differing mechanisms to manage the accumulation of sodium and cope with the oxidative damages.  相似文献   
8.
9.
Administration of methamphetamine (METH) to animals causes loss of DA terminals in the brain. The manner by which METH causes these changes in neurotoxicity is not known. We have tested the effects of this drug in copper/zinc (CuZn)-superoxide dismutase transgenic (SOD Tg) mice, which express the human CuZnSOD gene. In nontransgenic (non-Tg) mice, acute METH administration causes significant decreases in DA and dihydroxyphenylacetic acid (DOPAC) in the striata of non-Tg mice. In contrast, there were no significant decreases in striatal DA in the SOD Tg mice. The effects of METH on DOPAC were also attenuated in SOD Tg mice. Chronic METH administration caused decreases in striatal DA and DOPAC in the non-Tg mice, but not in the SOD-Tg mice. Similar studies were carried out with 1-methyl-1,2,3,6-tetrahydropyridine (MPTP), which also causes striatal DA and DOPAC depletion. As in the case of METH, MPTP causes marked depletion of DA and DOPAC in the non-Tg mice, but not in the SOD Tg mice. These results suggest that the mechanisms of toxicity of both METH and MPTP involve superoxide radical formation.  相似文献   
10.
Natural killer (NK) cells have significant capability in tumor immune-surveillance. The ability of lyse transformed cells immediately in an antigen-independent manner make them an attractive candidate for cancer cell therapy. Despite employment of NK cells in cancer immunotherapy, clinical trials are faced with serious limitations such as trouble with the penetration of NK cells in tumor sites, limited in vivo persistence, and tumor microenvironment interference. Taken together, the NK-cell cancer therapy is still infant scenario that has a long way to be translated in clinic. Current article first reviews characteristic features of NK lymphocytes. Then, it discusses about important disruptive barriers and motivator in the developmental stages of NK cells like as tumor microenvironment. Finally, some revolutionary approaches are highlighted utilizing of NK cells in cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号