首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2003年   1篇
  2000年   2篇
  1992年   1篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
1.
Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNA methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF_0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP_1951), and a 12-stranded β-barrel with a novel fold (V. parahaemolyticus VPA1032).  相似文献   
2.

Background

Severe malaria remains a major cause of global morbidity and mortality. Despite the use of potent anti-parasitic agents, the mortality rate in severe malaria remains high. Adjunctive therapies that target the underlying pathophysiology of severe malaria may further reduce morbidity and mortality. Endothelial activation plays a central role in the pathogenesis of severe malaria, of which angiopoietin-2 (Ang-2) has recently been shown to function as a key regulator. Nitric oxide (NO) is a major inhibitor of Ang-2 release from endothelium and has been shown to decrease endothelial inflammation and reduce the adhesion of parasitized erythrocytes. Low-flow inhaled nitric oxide (iNO) gas is a US FDA-approved treatment for hypoxic respiratory failure in neonates.

Methods/Design

This prospective, parallel arm, randomized, placebo-controlled, blinded clinical trial compares adjunctive continuous inhaled nitric oxide at 80 ppm to placebo (both arms receiving standard anti-malarial therapy), among Ugandan children aged 1-10 years of age with severe malaria. The primary endpoint is the longitudinal change in Ang-2, an objective and quantitative biomarker of malaria severity, which will be analysed using a mixed-effects linear model. Secondary endpoints include mortality, recovery time, parasite clearance and neurocognitive sequelae.

Discussion

Noteworthy aspects of this trial design include its efficient sample size supported by a computer simulation study to evaluate statistical power, meticulous attention to complex ethical issues in a cross-cultural setting, and innovative strategies for safety monitoring and blinding to treatment allocation in a resource-constrained setting in sub-Saharan Africa.

Trial Registration

ClinicalTrials.gov Identifier: NCT01255215  相似文献   
3.

Background

Single-limb knee extension exercises have been found to be effective at improving lower extremity exercise capacity in patients with chronic obstructive pulmonary disease (COPD). Since the positive local physiological effects of exercise training only occur in the engaged muscle(s), should upper extremity muscles also be included to determine the effect of single limb exercises in COPD patients.

Methods/design

Trial design: a prospective, assessor-blind, block randomized controlled, parallel-group multicenter trial. Participants: stage II-IV COPD patients, > 40?years of age, ex-smokers, with stable medical treatment will be included starting May 2011. Recruitment at three locations in Sweden. Interventions: 1) high-repetitive single limb exercise (HRSLE) training with elastic bands, 60 minutes, three times/week for 8?weeks combined with four sessions of 60 minutes patient education, or 2) the same patient education alone. Outcomes: Primary: determine the effects of HRSLE on local muscle endurance capacity (measured as meters walked during 6-minute walk test and rings moved on 6-minute ring and pegboard test) and quality of life (measured as change on the Swedish version of the Chronic Respiratory Disease Questionnaire). Secondary: effects on maximal strength, muscular endurance, dyspnea, self-efficacy, anxiety and depression. The relationship between changes in health-related variables and changes in exercise capacity, sex-related differences in training effects, feasibility of the program, strategies to determine adequate starting resistance and provide accurate resistance for each involved movement and the relationship between muscle fatigue and dyspnea in the different exercise tests will also be analyzed. Randomization: performed by a person independent of the recruitment process and using a computer random number generator. Stratification by center and gender with a 1:1 allocation to the intervention or control using random block sizes. Blinding: all outcome assessors will be blinded to group assignment.

Discussion

The results of this project will contribute to increase the body of knowledge regarding COPD and HRSLE.

Trial registration

ClinicalTrials.gov Identifier: NCT01354067. Registration date: 2011-05-11. First participant randomized: 2011-09-02  相似文献   
4.
Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3−/− cells. Notably, Ada3−/− cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G₁ or G₂ phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3−/− cells confirmed higher residual DNA damage in Ada3−/− cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability.  相似文献   
5.
Rice bran oil is known as wonder oil and it is the most important vegetable oil in Asia. Rice bran oil is extracted from bran that is the outer hard layer of rice. It is an emerging category in edible oil with a lot of nutritional properties and health benefits. Rice bran oil is heart-friendly, boosts up immunity, and prevents from other diseases occurring commonly in Pakistan. The current study aimed to stabilize rice bran oil through different probiotic isolates and to assess the nutritional content of rice bran oil after stabilization. The study was aimed to inactivate naturally occurring lipases that can hydrolyze oil into glycerol and free fatty acid which is a serious problem that gives it a rancid taste and smell. Antilipase activity was used to inactivate naturally occurring lipases that are a huge threat to the stabilization process. The fermentation process utilizes antilipase activity without affecting the nutritional value of oil. Lactobacillus strains were used for the stabilization of rice bran oil. Rice bran oil was extracted in the Soxhlet apparatus. The probiotic lab isolates Lactobacillus delbrueckii S2, Lactobacillus casei S5 and Lactobacillus plantarum S13 were applied to it to increase its shelf life and prevent oxidative rancidity. The extraction temperature of rice bran oil was maintained above 40 °C to inhibit lipase activity. Rice bran oil samples were stored at refrigeration temperature to arrest lipase activity. Probiotics maintained acidic pH to keep oil stabilization. Qualitative analysis was done to confirm rice bran oil stabilization. Determination of Free Fatty Acid (FFA) and saponification value confirmed that oxidative rancidity of rice bran oil was controlled by probiotics. FFA count was less than 10% and Saponification Value (SV) was 180. GC analysis was performed to analyze the FFA profile. Gas Chromatography results have shown 3 fatty acids. Statistical analysis has shown non-significant effect on different incubation temperatures of Lactobacillus isolates. Among the biological methods of stabilization, the use of probiotics is a novel concept and recommended for commercial application.  相似文献   
6.
Protein domain family PF11267 (DUF3067) is a family of proteins of unknown function found in both bacteria and eukaryotes. Here we present the solution NMR structure of the 102-residue Alr2454 protein from Nostoc sp. PCC 7120, which constitutes the first structural representative from this conserved protein domain family. The structure of Nostoc sp. Alr2454 adopts a novel protein fold.  相似文献   
7.
ABSTRACT: BACKGROUND: Worldwide, over 10 million people are killed or hospitalized because of traumatic brain injury each year. About 90% of deaths occur in low- and middle-income countries. The condition mostly affects young adults, and many experience long lasting or permanent disability. The social and economic burden is considerable. Tranexamic acid (TXA) is commonly given to surgical patients to reduce bleeding and the need for blood transfusion. It has been shown to reduce the number of patients receiving a blood transfusion by about a third, reduces the volume of blood transfused by about one unit, and halves the need for further surgery to control bleeding in elective surgical patients. Methods/design The CRASH-3 trial is an international, multicenter, pragmatic, randomized, double-blind, placebo-controlled trial to quantify the effects of the early administration of TXA on death and disability in patients with traumatic brain injury. Ten thousand adult patients who fulfil the eligibility criteria will be randomized to receive TXA or placebo. Adults with traumatic brain injury, who are within 8 h of injury and have any intracranial bleeding on computerized tomography (CT scan) or Glasgow Coma Score (GCS) of 12 or less can be included if the responsible doctor is substantially uncertain as to whether or not to use TXA in this patient. Patients with significant extracranial bleeding will be excluded since there is evidence that TXA improves outcome in these patients. Treatment will entail a 1 g loading dose followed by a 1 g maintenance dose over 8 h. The main analyses will be on an 'intention-to-treat' basis, irrespective of whether the allocated treatment was received. Results will be presented as appropriate effect estimates with a measure of precision (95% confidence intervals). Subgroup analyses for the primary outcome will be based on time from injury to randomization, the severity of the injury, location of the bleeding, and baseline risk. Interaction tests will be used to test whether the effect of treatment differs across these subgroups. A study with 10,000 patients will have approximately 90% power to detect a 15% relative reduction from 20% to 17% in all-cause mortality. Trial registration Current Controlled Trials ISRCTN15088122; Clinicaltrials.gov NCT01402882.  相似文献   
8.
The conserved Lipoprotein-17 domain of membrane-associated protein Q9PRA0_UREPA from Ureaplasma parvum was selected for structure determination by the Northeast Structural Genomics Consortium, as part of the Protein Structure Initiative's program on structure-function analysis of protein domains from large domain sequence families lacking structural representatives. The 100-residue Lipoprotein-17 domain is a "domain of unknown function" (DUF) that is a member of Pfam protein family PF04200, a large domain family for which no members have characterized biochemical functions. The three-dimensional structure of the Lipoprotein-17 domain of protein Q9PRA0_UREPA was determined by both solution NMR and by X-ray crystallography at 2.5 ?. The two structures are in good agreement with each other. The domain structure features three α-helices, α1 through α3, and five β-strands. Strands β1/β2, β3/β4, β4/β5 are anti-parallel to each other. Strands β1and β2 are orthogonal to strands β3, β4, β5, while helix α3 is formed between the strands β3 and β4. One-turn helix α2 is formed between the strands β1 and β2, while helix α1 occurs in the N-terminal polypeptide segment. Searches of the Protein Data Bank do not identify any other protein with significant structural similarity to Lipoprotein-17 domain of Q9PRA0_UREPA, indicating that it is a novel protein fold.  相似文献   
9.
In continuation of the investigation of osteogenic potential of solvent fractions of ethanolic extract of Cissus quadrangularis (CQ), an ancient medicinal plant, most notably known for its bone-healing properties, to isolate and identify antiosteoporotic compounds. In the current study, we report the effect of hexane fraction (CQ-H) and dichloromethane fraction (CQ-D) of CQ on the differentiation and mineralization of mouse preosteoblast cell line MC3T3-E1 (subclone 4). Growth, viability, and proliferation assays revealed that low concentrations (0.1, 1, and 100 ng/ml) of both solvent fractions were nontoxic, whereas higher concentrations were toxic to the cells. Differentiation and mineralization of MC3T3-E1 with nontoxic concentrations of CQ-D and CQ-H revealed that CQ-D delayed the mineralization of MC3T3-E1 cells. However, early and enhanced mineralization was observed in cultures treated with nontoxic concentrations of CQ-H, as indicated by Von Kossa staining and expression profile of osteoblast marker genes such as osterix, Runx2, alkaline phosphatase (ALP), collagen (Col1a1), integrin-related bone sialoprotein (IBSP), osteopontin (OPN), and osteocalcin (OCN). These findings suggest CQ-H as the most efficacious solvent fraction for further investigation to isolate and identify the active compounds in CQ-H.  相似文献   
10.
CDK2AP1 (cyclin-dependent kinase 2-associated protein 1), corresponding to the gene doc-1 (deleted in oral cancer 1), is a tumor suppressor protein. The doc-1 gene is absent or down-regulated in hamster oral cancer cells and in many other cancer cell types. The ubiquitously expressed CDK2AP1 protein is the only known specific inhibitor of CDK2, making it an important component of cell cycle regulation during G(1)-to-S phase transition. Here, we report the solution structure of CDK2AP1 by combined methods of solution state NMR and amide hydrogen/deuterium exchange measurements with mass spectrometry. The homodimeric structure of CDK2AP1 includes an intrinsically disordered 60-residue N-terminal region and a four-helix bundle dimeric structure with reduced Cys-105 in the C-terminal region. The Cys-105 residues are, however, poised for disulfide bond formation. CDK2AP1 is phosphorylated at a conserved Ser-46 site in the N-terminal "intrinsically disordered" region by IκB kinase ε.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号