首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1989年   1篇
  1984年   1篇
排序方式: 共有16条查询结果,搜索用时 359 毫秒
1.
2.
A photosynthetic reaction center (RC) complex was isolated from a purple bacterium, Acidiphilium rubrum. The RC contains bacteriochlorophyll a containing Zn as a central metal (Zn-BChl a) and bacteriopheophytin a (BPhe a) but no Mg-BChl a. The absorption peaks of the Zn-BChl a dimer (P(Zn)), the accessory Zn-BChl a (B(Zn)), and BPhe a (H) at 4 K in the RC showed peaks at 875, 792, and 753 nm, respectively. These peaks were shorter than the corresponding peaks in Rhodobacter sphaeroides RC that has Mg-BChl a. The kinetics of fluorescence from P(Zn)(*), measured by fluorescence up-conversion, showed the rise and the major decay with time constants of 0.16 and 3.3 ps, respectively. The former represents the energy transfer from B(Zn)(*) to P(Zn), and the latter, the electron transfer from P(Zn) to H. The angle between the transition dipoles of B(Zn) and P(Zn) was estimated to be 36 degrees based on the fluorescence anisotropy. The time constants and the angle are almost equal to those in the Rb. sphaeroides RC. The high efficiency of A. rubrum RC seems to be enabled by the chemical property of Zn-BChl a and by the L168HE modification of the RC protein that modifies P(Zn).  相似文献   
3.
Pyranose 2‐oxidase (P2O) from Trametes multicolor contains FAD as cofactor, and forms a tetramer. The protein structure of a mutated P2O, T169S (Thr169 is replaced by Ser), in solution was studied by means of molecular dynamics simulation and analyses of photoinduced electron transfer (ET) from Trp168 to excited isoalloxazine (Iso*), and was compared with wild type (WT) P2O. Hydrogen bonding between Iso and nearby amino acids was very similar as between T169S and WT protein. Distances between Iso and Tyr456 were extremely heterogeneous among the subunits, 1.7 (1.5 in WT) in subunit A (Sub A), 0.97 (2.2 in WT) in Sub B, 1.3 (2.1 in WT) in Sub C, 1.3 nm (2.0 in WT) in Sub D. Mean values of root of mean square fluctuation over all residues were greater by four times than those in WT. This suggests that the protein structure of T169S is much more flexible than that of WT. Electrostatic (ES) energies between Iso anion in one subunit and ionic groups in the entire protein were evaluated. It was found that more than 50% of the total ES energy in each subunit is contributed from other subunits. Reported fluorescence decays were analyzed by a method as WT, previously reported. Electron affinities of Iso* in T169S were appreciably higher than those in WT. Static dielectric constants near Iso and Trp168 were also quite higher in T169S than those in WT.  相似文献   
4.
The cGMP-binding cGMP-specific phosphodiesterase (PDE-5) contains distinct catalytic and allosteric binding sites, and each is cGMP-specific. Cyclic nucleotide phosphodiesterase inhibitors, such as 3-isobutyl-1-methylxanthine (IBMX), are believed to compete with cyclic nucleotides at the catalytic sites of these enzymes, but the portion of PDE-5 that accounts for interaction of either of these inhibitors or the substrates themselves with the catalytic domain of the enzymes has not been identified. IBMX was derivatized to yield the photoaffinity probe 8([3-125I,-4-azido]-benzyl)-IBMX, which is referred to as 8(125IAB)-IBMX. This probe was incubated with partially purified recombinant bovine PDE-5. After UV irradiation and SDS-PAGE, a single radiolabeled band that coincided with the position of PDE-5 was visualized on the gel, and the photoaffinity labeling of PDE-5 was linear with increasing concentration of the 8(125IAB)-IBMX. Prominent Coomassie blue-stained bands other than PDE-5 were not labeled significantly. The photo-affinity labeling was progressively blocked by cGMP at concentrations higher than 10 μM, whereas cAMP or 5′-GMP exhibited only weak inhibitory effects. Other compounds that are believed to interact with the PDE-5 catalytic site, including IBMX, clMP, and β-phenyl-1,N 2-etheno-cGMP (PET-cGMP), also inhibited the photoaffinity labeling in a concentration-dependent manner. The IC50 of PET-cGMP for inhibition of photoaffinity labeling was 10 μM, which compared favorably with an IC50 of 5 μM for inhibition of PDE-5 catalytic activity by this compound. It is concluded that the interaction of this photoaffinity probe with PDE-5 is highly specific for the catalytic site over the allosteric binding sites of PDE-5 and could prove useful in studies to map the catalytic site of PDE-5.  相似文献   
5.
A photosynthetic reaction center (RC) complex was isolated from a purple bacterium, Acidiphilium rubrum. The RC contains bacteriochlorophyll a containing Zn as a central metal (Zn-BChl a) and bacteriopheophytin a (BPhe a) but no Mg-BChl a. The absorption peaks of the Zn-BChl a dimer (PZn), the accessory Zn-BChl a (BZn), and BPhe a (H) at 4 K in the RC showed peaks at 875, 792, and 753 nm, respectively. These peaks were shorter than the corresponding peaks in Rhodobacter sphaeroides RC that has Mg-BChl a. The kinetics of fluorescence from PZn*, measured by fluorescence up-conversion, showed the rise and the major decay with time constants of 0.16 and 3.3 ps, respectively. The former represents the energy transfer from BZn* to PZn, and the latter, the electron transfer from PZn to H. The angle between the transition dipoles of BZn and PZn was estimated to be 36° based on the fluorescence anisotropy. The time constants and the angle are almost equal to those in the Rb. sphaeroides RC. The high efficiency of A. rubrum RC seems to be enabled by the chemical property of Zn-BChl a and by the L168HE modification of the RC protein that modifies PZn.  相似文献   
6.
7.
Sporadic Creutzfeldt-Jakob disease (sCJD) cases are currently subclassified according to the methionine/valine polymorphism at codon 129 of the PRNP gene and the proteinase K (PK) digested abnormal prion protein (PrPres)identified on Western blotting (type 1 or type 2). These biochemically distinct PrPres types have been considered to represent potential distinct prion strains. However, since cases of CJD show co-occurrence of type 1 and type 2 PrPres in the brain, the basis of this classification system and its relationship to agent strain are under discussion. Different brain are as from 41 sCJD and 12 iatrogenic CJD (iCJD) cases were investigated, using Western blotting for PrPres and two other biochemical assays reflecting the behaviour of the disease-associated form of the prion protein (PrPSc) under variable PK digestion conditions. In 30% of cases, both type 1 and type 2 PrPres were identified. Despite this, the other two biochemical assays found that PrPSc from an individual patient demonstrated uniform biochemical properties. Moreover, in sCJD, four distinct biochemical PrPSc subgroups were identified that correlated with the current sCJD clinico-pathological classification. In iCJD, four similar biochemical clusters were observed, but these did not correlate to any particular PRNP 129 polymorphism or western blot PrPres pattern. The identification of four different PrPSc biochemical subgroups in sCJD and iCJD, irrespective of the PRNP polymorphism at codon 129 and the PrPres isoform provides an alternative biochemical definition of PrPSc diversity and new insight in the perception of Human TSE agents variability.  相似文献   
8.
Diabetes increases the percentage of circulating erythrocytes exposing phosphatidylserine (PS) at the cell surface. PS-exposing erythrocytes are recognized, bound, engulfed and degraded by macrophages. Thus, PS exposure, a feature of suicidal erythrocyte death or eryptosis, accelerates clearance of affected erythrocytes from circulating blood. Moreover, PS-exposing erythrocytes bind to the vascular wall thus interfering with microcirculation. The present study explored mechanisms involved in the triggering of PS exposure by methylgloxal, an extra- and intracellular metabolite which is enhanced in diabetes. PS exposure, cell size and cytosolic Ca(2+)-activity after methylglyoxal treatment were measured by FACS analysis of annexin V binding, forward scatter and Fluo-3-fluorescence, respectively, and it was shown that the treatment significantly enhanced the percentage of PS-exposing erythrocytes at concentrations (0.3 microM) encountered in diabetic patients. Surprisingly, methylglyoxal did not significantly increase cytosolic Ca(2+) concentration, and at concentrations up to 3 microM, did not decrease the forward scatter. Instead, exposure to methylglyoxal inhibited glycolysis thus decreasing ATP and GSH concentrations. In conclusion, methylglyoxal impairs energy production and anti-oxidative defense, effects contributing to the enhanced PS exposure of circulating erythrocytes and eventually resulting in anemia and deranged microcirculation.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号