首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   9篇
  国内免费   2篇
  2015年   6篇
  2014年   7篇
  2013年   17篇
  2012年   6篇
  2011年   15篇
  2010年   27篇
  2009年   23篇
  2008年   22篇
  2007年   19篇
  2006年   11篇
  2005年   19篇
  2004年   6篇
  2003年   4篇
  2002年   5篇
  1999年   8篇
  1998年   10篇
  1997年   12篇
  1996年   10篇
  1995年   4篇
  1994年   6篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   6篇
  1989年   9篇
  1988年   3篇
  1987年   7篇
  1986年   7篇
  1985年   7篇
  1984年   4篇
  1983年   3篇
  1982年   5篇
  1981年   4篇
  1980年   14篇
  1979年   13篇
  1978年   11篇
  1977年   4篇
  1976年   8篇
  1975年   3篇
  1972年   13篇
  1971年   7篇
  1970年   4篇
  1969年   4篇
  1968年   3篇
  1967年   3篇
  1966年   4篇
  1958年   3篇
  1956年   3篇
  1955年   4篇
  1954年   3篇
排序方式: 共有437条查询结果,搜索用时 78 毫秒
1.
Aquatic snails from south western Zimbabwe belonging to theBulinus trunscatus/tropicus complex vary widely in shell formsuggesting that more than one taxon could be present. This possibilitywas investigated by making observations on snail samples from13 populations from the Plumtree area, in respect of allozymevariation (5 polymorphic loci), shell morphology (9 variables),copulatory organ and chromosome number. Comparative data wereobtained from snails from north western Zimbabwe identifieddefinitely as B. tropicus. Analysis of the genetic structurerevealed a high degree of polymorphism (P) ranging from 0.29–0.80among populations from Plumtree and expected heterozygosity(He) from 0.02–0.22. No enzymatic diagnostic loci werefound which could differentiate the different morphs or populationsand discriminant function analysis on the morphological datashowed an overlap of morphs among populations. Snails analyzedfor chromosome number were all diploid (2n = 36). Snails exposedto Schistosoma haematobium mira-cidia were all refractory. Thisinformation supports the view of a single species, B. tropicus,which is differentiated due to migration barriers and whereenvironmental variables might be implicated in the morphometricdivergence. (Received 31 July 1995; accepted 15 January 1998)  相似文献   
2.
The use of fossil fuel is predicted to cause an increase of the atmospheric CO2 concentration, which will affect the global pattern of temperature and precipitation. It is therefore essential to incorporate effects of temperature and water supply on carbon partitioning of plants to predict effects of elevated [CO2] on growth and yield of Triticum aestivum. Although earlier papers have emphasized that elevated [CO2] favours investment of biomass in roots relative to that in leaves, it has now become clear that these are indirect effects, due to the more rapid depletion of nutrients in the root environment as a consequence of enhanced growth. Broadly generalized, the effect of temperature on biomass allocation in the vegetative stage is that the relative investment of biomass in roots is lowest at a certain optimum temperature and increases at both higher and lower temperatures. This is found not only when the temperature of the entire plant is varied, but also when only root temperature is changed whilst shoot temperature is kept constant. Effects of temperature on the allocation pattern can be explained largely by the effect of root temperature on the roots' capacity to transport water. Effects of a shortage in water supply on carbon partitioning are unambiguous: roots receive relatively more carbon. The pattern of biomass allocation in the vegetative stage and variation in water-use efficiency are prime factors determining a plant's potential for early growth and yield in different environments. In a comparison of a range of T. aestivum cultivars, a high water-use efficiency at the plant level correlates positively with a large investment in both leaf and root biomass, a low stomatal conductance and a large investment in photosynthetic capacity. We also present evidence that a lower investment of biomass in roots is not only associated with lower respiratory costs for root growth, but also with lower specific costs for ion uptake. We suggest the combination of a number of traits in future wheat cultivars, i.e. a high investment of biomass in leaves, which have a low stomatal conductance and a high photosynthetic capacity, and a low investment of biomass in roots, which have low respiratory costs. Such cultivars are considered highly appropriate in a future world, especially in the dryer regions. Although variation for the desired traits already exists among wheat cultivars, it is much larger among wild Aegilops species, which can readily be crossed with T. aestivum. Such wild relatives may be exploited to develop new wheat cultivars well-adapted to changed climatic conditions.  相似文献   
3.
Metabolomic investigation of the freezing-tolerant Arabidopsis mutant esk1 revealed large alterations in polar metabolite content in roots and shoots. Stress metabolic markers were found to be among the most significant metabolic markers associated with the mutation, but also compounds related to growth regulation or nutrition. The metabolic phenotype of esk1 was also compared to that of wild type (WT) under various environmental constraints, namely cold, salinity and dehydration. The mutant was shown to express constitutively a subset of metabolic responses which fits with the core of stress metabolic responses in the WT. But remarkably, the most specific metabolic responses to cold acclimation were not phenocopied by esk1 mutation and remained fully inducible in the mutant at low temperature. Under salt stress, esk1 accumulated lower amounts of Na+ in leaves than the WT, and under dehydration stress its metabolic profile and osmotic potential were only slightly impacted. These phenotypes are consistent with the hypothesis of an altered water status in esk1 , which actually exhibited basic lower water content (WC) and transpiration rate (TR) than the WT. Taken together, the results suggest that ESK1 does not function as a specific cold acclimation gene, but could rather be involved in water homeostasis.  相似文献   
4.
Root respiration of the tap root forming species Hypochaeris radicata L. was measured during tap root formation. A comparison was made of two subspecies: H. radicata L. ssp. radicata L., a subspecies from relatively rich soils, and H. radicata L. ssp. ericetorum Van Soest, a subspecies from poor acidic soils. Root respiration was high and to a large extent inhibited by hydroxamic acid (SHAM) before the start of the tap root formation, indicating a high activity of an alternative non-phosphorylative electron transport chain. The rate of root respiration was much lower and less sensitive to SHAM when a considerable tap root was present. However, root respiration was also cyanide-resistant when a tap root was present, indicating that the alternative pathway was still present. A decreased rate of root respiration coincided with an increase of the content of storage carbohydrates, mainly in the tap root. The level of reducing sugars was constant throughout the experimental period, and it was concluded that the activity of the alternative oxidative pathway was significant in oxidation of sugars that could not be utilized for purposes like energy production, the formation of intermediates for growth or for storage. Root respiration decreased after the formation of a tap root. This decrease could neither be attributed to a gradual disappearance of the alternative chain, nor to a decreased level of reducing sugars. No differences in respiratory metabolism between the two subspecies have been observed, suggesting that a high activity of the alternative oxidative pathway is not significant in adaptation of the present two subspecies to relatively nutrient-rich or poor soils.  相似文献   
5.
ABSTRACT.
  • 1 In a given ant species, the number of ants collecting honeydew in an aphid colony or extrafloral nectar on a plant is proportional to the productivity of the colony or plant. Thus, the number of ants per resource unit and the ingestion rate per ant are constant for a species.
  • 2 Mean number of ants per resource unit and ingestion rate per ant differed considerably between the investigated species. The ingestion rate increases with the body size of the species and decreases with an increase of the mean number of ants per resource unit.
  • 3 Ingestion rates were higher in ants foraging singly at the resource than in ants foraging in the normal way in a group.
  • 4 It is suggested that the ingestion rate per ant is reduced below a maximum level by the number of ants present per resource unit because a certain number of ants is needed to defend the resource against alien ants. Small species need more individuals for this purpose than large species, and consequently suffer a larger reduction of their ingestion rate.
  相似文献   
6.
A model was constructed to describe the translocation and partitioningof nitrogen on the seventh day after anthesis for well-wateredand droughted plants of two wheat varieties (Triticum aestivumL. cv. Warigal and Condor). The glasshouse-grown plants weredetillered so that a simplified model could be derived for themain stem. A 9-d drought treatment was imposed just after anthesisand this coincided with the period of endosperm cell divisionin the grains. Warigal, which had a higher grain yield thanCondor under drought, absorbed up to 15-times more nitrogenand translocated 1.5-fold more nitrogen to the shoot via thexylem. In both varieties, nitrogen redistributed from vegetativeorgans accounted for more than 60 per cent in control and 70per cent in droughted plants of the nitrogen needed for eargrowth. The net loss of nitrogen increased by 4-3 per cent inthe leaves, but decreased by 60 per cent in the stem under drought.Stem and roots appeared to play an important role in the nitrogeneconomy of droughted plants: less nitrogen was translocateddirectly to the grains from the senescing leaves and 40–60per cent more nitrogen was translocated to the roots. Nearlyall the nitrogen reaching the roots in the phloem was reloadedinto the xylem stream and translocated back to the shoot. Thetransfer of nitrogen through the stem was reduced under droughtand this resulted in a constant C:N ratio of the grains whichmay be important in the regulation of endosperm cell division. Triticum aestivum L., wheat, drought, nitrogen, senescence, translocation  相似文献   
7.
8.
"Spemann's" lecture treats experiments on the separation ofthe first two cells of a frog, or sea urchin, or salamanderembryo; the induction of a lens in a frog embryo by an opticvesicle (primordium of the eye); and the primary organizer thatis a dynamic center, establishing the basic organization ofthe embryo and inducing the nervous system and sense organs."Spemann" goes beyond science in speaking poetically of thebeauty and order in the universe, and to illustrate how a goodscholar should work he uses a lovely metaphor of piecing togetherthe fragments of a broken vase. "Spemann" concludes with a stirringplea for academic freedom.  相似文献   
9.
ABSTRACT.
  • 1 Natural enemies account for almost all mortality of zebra swallowtail caterpillars (Eurytides marcellus [Cramer]) feeding on pawpaw (Asimina spp.) in Florida.
  • 2 The osmaterial glands of the third instar caterpillars reduce predation rates in the spring, but not later in the season.
  • 3 The seasonal decline in effectiveness of osmateria in deterring natural enemies probably stems from a reduction in the importance of the predators that are repelled by osmateria.
  相似文献   
10.
In plant nutrition studies with culture solutions it is tacitly assumed that replenishment of ions at the root surface is guaranteed by the turbulence of the stirred solution. That this belief may be erroneous is demonstrated in this study with barley roots and discs of beet roots and potato tubers. At very low concentrations of RbCl (in presence of CaCl2) the uptake of Rb by roots is strongly controlled by the rate of stirring. The results are interpreted in the light of the Nernst hydrodynamic boundary film which surrounds solids and through which ions must diffuse to reach the root surface. “Film-controlled” and “root-controlled” ion uptake is visualized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号