首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The use of fossil fuel is predicted to cause an increase of the atmospheric CO2 concentration, which will affect the global pattern of temperature and precipitation. It is therefore essential to incorporate effects of temperature and water supply on carbon partitioning of plants to predict effects of elevated [CO2] on growth and yield of Triticum aestivum. Although earlier papers have emphasized that elevated [CO2] favours investment of biomass in roots relative to that in leaves, it has now become clear that these are indirect effects, due to the more rapid depletion of nutrients in the root environment as a consequence of enhanced growth. Broadly generalized, the effect of temperature on biomass allocation in the vegetative stage is that the relative investment of biomass in roots is lowest at a certain optimum temperature and increases at both higher and lower temperatures. This is found not only when the temperature of the entire plant is varied, but also when only root temperature is changed whilst shoot temperature is kept constant. Effects of temperature on the allocation pattern can be explained largely by the effect of root temperature on the roots' capacity to transport water. Effects of a shortage in water supply on carbon partitioning are unambiguous: roots receive relatively more carbon. The pattern of biomass allocation in the vegetative stage and variation in water-use efficiency are prime factors determining a plant's potential for early growth and yield in different environments. In a comparison of a range of T. aestivum cultivars, a high water-use efficiency at the plant level correlates positively with a large investment in both leaf and root biomass, a low stomatal conductance and a large investment in photosynthetic capacity. We also present evidence that a lower investment of biomass in roots is not only associated with lower respiratory costs for root growth, but also with lower specific costs for ion uptake. We suggest the combination of a number of traits in future wheat cultivars, i.e. a high investment of biomass in leaves, which have a low stomatal conductance and a high photosynthetic capacity, and a low investment of biomass in roots, which have low respiratory costs. Such cultivars are considered highly appropriate in a future world, especially in the dryer regions. Although variation for the desired traits already exists among wheat cultivars, it is much larger among wild Aegilops species, which can readily be crossed with T. aestivum. Such wild relatives may be exploited to develop new wheat cultivars well-adapted to changed climatic conditions.  相似文献   
2.
3.
In environments where the amount of water is limiting growth, water-use efficiency (biomass production per unit water use) is an important trait. We studied the relationships of plant growth and water use efficiency with the pattern of biomass allocation, using 10 wheat cultivars, grown at two soil moisture levels in a growth chamber. Allocation pattern and relative growth rate were not correlated, whereas allocation pattern and water use efficiency were. Variation in transpiration per plant resulted from variation in the rate of transpiration per unit leaf area or root weight, rather than from differences in leaf area or root weight per plant. Transpiration per unit leaf area or root weight was lower when the leaf area or root weight per unit plant weight was larger. Also, the efficiency of water use at the plant and leaf levels was higher for plants with a higher leaf area per unit plant weight, and it was not correlated with the plant's growth rate. Differences in water-use efficiency at the leaf level were related to variation in stomatal conductance, rather than in the rate of photosynthesis. A high photosynthetic water-use efficiency was associated with a low efficiency of nitrogen use for photosynthesis.  相似文献   
4.
5.
We investigated physiological and morphological traits underlying variation in relative growth rate (KGR) among wheat cultivars. Subsequently, we determined whether higher RGR is correlated with higher water demand and lower plant water use efficiency (WUEp). Further, the correlation between water use efficiency and leaf nitrogen concentration was examined. For this purpose we chose lour cultivars contrasting in RGR or WUEp. Gas exchange of shoots and respiration of roots were measured on intact plants over a 24 h period, and total carbon and nitrogen concentrations of all plant parts were determined. The highest RGR was achieved by the cultivars with the highest leaf area ratio. WUEp was strongly dependent on photosynthetic water use efficiency and was highest for the cultivars with the highest rate of photosynthesis, which achieved higher rates of photosynthesis per unit leaf nitrogen. We found no evidence for a functional or genetic link between the physiological traits underlying differences in RGR (specific leaf area and leaf area ratio) and those causing variation in water use efficiency (photosynthetic rate and transpiration rate). These results indicate that, in wheat, it may be possible to select simultaneously for traits associated with a high WUEp and a high RGR.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号