首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   5篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   3篇
  1998年   8篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1957年   1篇
  1934年   1篇
排序方式: 共有75条查询结果,搜索用时 78 毫秒
1.

Background  

Populations of the Oriental White-backed Vulture (Gyps bengalensis) have declined by over 95% within the past decade. This decline is largely due to incidental consumption of the non-steroidal anti-inflammatory veterinary pharmaceutical diclofenac, commonly used to treat domestic livestock. The conservation status of other Gyps vultures in southern Asia is also of immediate concern, given the lack of knowledge regarding status of their populations and the continuing existence of taxonomic uncertainties. In this study, we assess phylogenetic relationships for all recognized species and the majority of subspecies within the genus Gyps. The continuing veterinary use of diclofenac is an unknown but potential risk to related species with similar feeding habits to Gyps bengalensis. Therefore, an accurate assessment of the phylogenetic relationships among Gyps vultures should aid in their conservation by clarifying taxonomic uncertainties, and enabling inference of their respective relatedness to susceptible G. bengalensis.  相似文献   
2.
3.
Nutritional deficiency and stress can severely impair intestinal architecture, integrity and host immune defense, leading to increased susceptibility to infection and cancer. Although the intestine has an inherent capability to adapt to environmental stress, the molecular mechanisms by which the intestine senses and responds to malnutrition are not completely understood. We hereby report that intestinal cell kinase (ICK), a highly conserved serine/threonine protein kinase, is a novel component of the adaptive cell signaling responses to protein malnutrition in murine small intestine. Using an experimental mouse model, we demonstrated that intestinal ICK protein level was markedly and transiently elevated upon protein deprivation, concomitant with activation of prominent pro-proliferation and pro-survival pathways of Wnt/β-catenin, mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and protein kinase B (PKB/Akt) as well as increased expression of intestinal stem cell markers. Using the human ileocecal epithelial cell line HCT-8 as an in vitro model, we further demonstrated that serum starvation was able to induce up-regulation of ICK protein in intestinal epithelial cells in a reversible manner, and that serum albumin partially contributed to this effect. Knockdown of ICK expression in HCT-8 cells significantly impaired cell proliferation and down-regulated active β-catenin signal. Furthermore, reduced ICK expression in HCT-8 cells induced apoptosis through a caspase-dependent mechanism. Taken together, our findings suggest that increased ICK expression/activity in response to protein deprivation likely provides a novel protective mechanism to limit apoptosis and support compensatory mucosal growth under nutritional stress.  相似文献   
4.
5.
6.

Background

Enteroaggregative Escherichia coli (EAEC) is recognized as an emerging cause of persistent diarrhea and enteric disease worldwide. Mucosal immunity towards EAEC infections is incompletely understood due in part to the lack of appropriate animal models. This study presents a new mouse model and investigates the role of peroxisome proliferator-activated receptor gamma (PPARγ) in the modulation of host responses to EAEC in nourished and malnourished mice.

Methods/Principal Findings

Wild-type and T cell-specific PPARγ null C57BL/6 mice were fed protein-deficient diets at weaning and challenged with 5×109cfu EAEC strain JM221 to measure colonic gene expression and immune responses to EAEC. Antigen-specific responses to E. coli antigens were measured in nourished and malnourished mice following infection and demonstrated the immunosuppressive effects of malnutrition at the cellular level. At the molecular level, both pharmacological blockade and deletion of PPARγ in T cells resulted in upregulation of TGF-β, IL-6, IL-17 and anti-microbial peptides, enhanced Th17 responses, fewer colonic lesions, faster clearance of EAEC, and improved recovery. The beneficial effects of PPARγ blockade on weight loss and EAEC clearance were abrogated by neutralizing IL-17 in vivo.

Conclusions

Our studies provide in vivo evidence supporting the beneficial role of mucosal innate and effector T cell responses on EAEC burden and suggest pharmacological blockade of PPARγ as a novel therapeutic intervention for EAEC infection.  相似文献   
7.
The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.  相似文献   
8.
9.
Alanyl-glutamine (Ala-Gln) has recently been shown to enhance catch-up growth and gut integrity in undernourished children from Northeast Brazil. We hypothesized that the intestinal epithelial effects of Ala-Gln in malnourished weanling mice and mouse small intestinal epithelial (MSIE) cells would include modulation of barrier function, proliferation, and apoptosis. Dams of 10-day-old suckling C57BL/6 pups were randomized to a standard diet or an isocaloric Northeast Brazil "regional basic diet," moderately deficient in protein, fat, and minerals. Upon weaning to their dam's diet on day of life 21, pups were randomized to Ala-Gln solution or water. At 6 wk of age, mice were killed, and jejunal tissue was collected for morphology, immunohistochemistry, and Ussing chamber analysis of transmucosal resistance and permeability. Proliferation of MSIE cells in the presence or absence of Ala-Gln was measured by MTS and bromodeoxyuridine assays. MSIE apoptosis was assessed by annexin and 7-amino-actinomycin D staining. Pups of regional basic diet-fed dams exhibited failure to thrive. Jejunal specimens from undernourished weanlings showed decreased villous height and crypt depth, decreased transmucosal resistance, increased permeability to FITC-dextran, increased claudin-3 expression, and decreased epithelial proliferation and increased epithelial apoptosis (as measured by bromodeoxyuridine and cleaved caspase-3 staining, respectively). Undernourished weanlings supplemented with Ala-Gln showed improvements in weight velocity, villous height, crypt depth, transmucosal resistance, and epithelial proliferation/apoptosis compared with unsupplemented controls. Similarly, Ala-Gln increased proliferation and reduced apoptosis in MSIE cells. In summary, Ala-Gln promotes intestinal epithelial homeostasis in a mouse model of malnutrition-associated enteropathy, mimicking key features of the human disease.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号