首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   9篇
  国内免费   4篇
  2022年   1篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   10篇
  2014年   11篇
  2013年   6篇
  2012年   7篇
  2011年   4篇
  2010年   9篇
  2009年   7篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   5篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1983年   4篇
  1978年   2篇
  1973年   1篇
排序方式: 共有120条查询结果,搜索用时 687 毫秒
1.
The region of the clock gene period (per) that encodes a repetitive tract of threonine-glycine (Thr-Gly) pairs has been compared between Dipteran species both within and outside the Drosophilidae. All the non- Drosophilidae sequences in this region are short and present a remarkably stable picture compared to the Drosophilidae, in which the region is much larger and extremely variable, both in size and composition. The accelerated evolution in the repetitive region of the Drosophilidae appears to be mainly due to an expansion of two ancestral repeats, one encoding a Thr-Gly dipeptide and the other a pentapeptide rich in serine, glycine, and asparagine or threonine. In some drosophilids the expansion involves a duplication of the pentapeptide sequence, but in Drosophila pseudoobscura both the dipeptide and the pentapeptide repeats are present in larger numbers. In the nondrosophilids, however, the pentapeptide sequence is represented by one copy and the dipeptide by two copies. These observations fulfill some of the predictions of recent theoretical models that have simulated the evolution of repetitive sequences.   相似文献   
2.
We have analyzed the conserved regions of the gene coding for the circumsporozoite protein (CSP) in 12 species of Plasmodium, the malaria parasite. The closest evolutionary relative of P. falciparum, the agent of malignant human malaria, is P. reichenowi, a chimpanzee parasite. This is consistent with the hypothesis that P. falciparum is an ancient human parasite, associated with humans since the divergence of the hominids from their closest hominoid relatives. Three other human Plasmodium species are each genetically indistinguishable from species parasitic to nonhuman primates; that is, for the DNA sequences included in our analysis, the differences between species are not greater than the differences between strains of the human species. The human P. malariae is indistinguishable from P. brasilianum, and P. vivax is indistinguishable from P. simium; P. brasilianum and P. simium are parasitic to New World monkeys. The human P. vivax-like is indistinguishable from P. simiovale, a parasite of Old World macaques. We conjecture that P. malariae, P. vivax, and P. vivax-like are evolutionarily recent human parasites, the first two at least acquired only within the last several thousand years, and perhaps within the last few hundred years, after the expansion of human populations in South America following the European colonizations. We estimate the rate of evolution of the conserved regions of the CSP gene as 2.46 x 10(-9) per site per year. The divergence between the P. falciparum and P. reichenowi lineages is accordingly dated 8.9 Myr ago. The divergence between the three lineages leading to the human parasites is very ancient, about 100 Myr old between P. malariae and P. vivax (and P. vivax-like) and about 165 Myr old between P. falciparum and the other two.   相似文献   
3.
Photosynthetic enhancement studies performed at 619 nm (excitation of Systems I and II) and at 446 nm (mainly excitation of System I) revealed an 18% photosynthetic enhancement simultaneously with a 31% reduction in glycolate excretion. This observation supports the hypothesis that some glycolate may be consumed in an oxidation process associated with System I when System II is poorly excited and the supply of electrons from the water splitting process of photosynthesis is low.  相似文献   
4.
K-Ras is a membrane-associated GTPase that cycles between active and inactive conformational states to regulate a variety of cell signaling pathways. Somatic mutations in K-Ras are linked to 15–20% of all human tumors. K-Ras attaches to the inner leaflet of the plasma membrane via a farnesylated polybasic domain; however, the structural details of the complex remain poorly understood. Based on extensive (7.5 μs total) atomistic molecular dynamics simulations here we show that oncogenic mutant K-Ras interacts with a negatively charged lipid bilayer membrane in multiple orientations. Of these, two highly populated orientations account for ∼54% of the conformers whose catalytic domain directly interacts with the bilayer. In one of these orientation states, membrane binding involves helices 3 and 4 of the catalytic domain in addition to the farnesyl and polybasic motifs. In the other orientation, β-strands 1–3 and helix 2 on the opposite face of the catalytic domain contribute to membrane binding. Flexibility of the linker region was found to be important for the reorientation. The biological significance of these observations was evaluated by initial experiments in cells overexpressing mutant K-Ras as well as by an analysis of Ras-effector complex structures. The results suggest that only one of the two major orientation states is capable of effector binding. We propose that the different modes of membrane binding may be exploited in structure-based drug design efforts for cancer therapy.  相似文献   
5.
There is strong evidence that vasodilatory nitric oxide (NO) donors have anabolic effects on bone in humans. Parathyroid hormone (PTH), the only osteoanabolic drug currently approved, is also a vasodilator. We investigated whether the NO synthase inhibitor L‐NAME might alter the effect of PTH on bone by blocking its vasodilatory effect. BALB/c mice received 28 daily injections of PTH[1–34] (80 µg/kg/day) or L‐NAME (30 mg/kg/day), alone or in combination. Hindlimb blood perfusion was measured by laser Doppler imaging. Bone architecture, turnover and mechanical properties in the femur were analysed respectively by micro‐CT, histomorphometry and three‐point bending. PTH increased hindlimb blood flow by >30% within 10 min of injection (P < 0.001). Co‐treatment with L‐NAME blocked the action of PTH on blood flow, whereas L‐NAME alone had no effect. PTH treatment increased femoral cortical bone volume and formation rate by 20% and 110%, respectively (P < 0.001). PTH had no effect on trabecular bone volume in the femoral metaphysis although trabecular thickness and number were increased and decreased by 25%, respectively. Co‐treatment with L‐NAME restricted the PTH‐stimulated increase in cortical bone formation but had no clear‐cut effects in trabecular bone. Co‐treatment with L‐NAME did not affect the mechanical strength in femurs induced by iPTH. These results suggest that NO‐mediated vasorelaxation plays partly a role in the anabolic action of PTH on cortical bone. © 2016 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd.  相似文献   
6.
One can determine the best dilution of a primary antibody for immunohistochemistry that uses horseradish peroxidase conjugated to a secondary antibody by testing increasing concentrations sequentially on the same tissue section. When the same tissue section is incubated repeatedly with increasing concentrations of primary antibodies to epithelial membrane antigen, smooth muscle α-actin, or vimentin using alkaline phosphatase conjugated to a secondary antibody as the reporter, the best staining was obtained with a less concentrated primary antibody than was optimal for a single staining test. The best concentration of primary antibody for single run staining using an alkaline phosphatase reporting system is usually four times the best concentration for staining with multiple runs. The optimal concentration can be determined by denaturing the residual alkaline phosphatase and extracting residual stain by incubating the section in 4:1 diglyme:phosphate buffered saline for 20 min at 80o C between tests of primary antibody concentrations. I tested the method for four chromogens from one supplier and one chromogen from a different supplier.  相似文献   
7.
Recent studies have shown that the small GTPase KRAS adopts multiple orientations with respect to the plane of anionic model membranes, whereby either the three C-terminal helices or the three N-terminal β-strands of the catalytic domain face the membrane. This has functional implications because, in the latter, the membrane occludes the effector-interacting surface. However, it remained unclear how membrane reorientation occurs and, critically, whether it occurs in the cell in which KRAS operates as a molecular switch in signaling pathways. Herein, using data from a 20 μs-long atomistic molecular dynamics simulation of the oncogenic G12V-KRAS mutant in a phosphatidylcholine/phosphatidylserine bilayer, we first show that internal conformational fluctuations of flexible regions in KRAS result in three distinct membrane orientations. We then show, using single-molecule fluorescence resonance energy transfer measurements in native lipid nanodiscs derived from baby hamster kidney cells, that G12V-KRAS samples three conformational states that correspond to the predicted orientations. The combined results suggest that relatively small energy barriers separate orientation states and that signaling-competent conformations dominate the overall population.  相似文献   
8.
The N-terminal domain of the Tn916 integrase protein (INT-DBD) is responsible for DNA binding in the process of strand cleavage and joining reactions required for transposition of the Tn916 conjugative transposon. Site-specific association is facilitated by numerous protein-DNA contacts from the face of a three-stranded beta-sheet inserted into the major groove. The protein undergoes a subtle conformational transition and is slightly unfolded in the protein-DNA complex. The conformation of many charged residues is poorly defined by NMR data but mutational studies have indicated that removal of polar side chains decreases binding affinity, while non-polar contacts are malleable. Based on analysis of the binding enthalpy and binding heat capacity, we have reasoned that dehydration of the protein-DNA interface is incomplete. This study presents results from a molecular dynamics investigation of the INT-DBD-DNA complex aimed at a more detailed understanding of the role of conformational dynamics and hydration in site-specific binding. Comparison of simulations (total of 13 ns) of the free protein and of the bound protein conformation (in isolation or DNA-bound) reveals intrinsic flexibility in certain parts of the molecule. Conformational adaptation linked to partial unfolding appears to be induced by protein-DNA contacts. The protein-DNA hydrogen-bonding network is highly dynamic. The simulation identifies protein-DNA interactions that are poorly resolved or only surmised from the NMR ensemble. Single water molecules and water clusters dynamically optimize the complementarity of polar interactions at the 'wet' protein-DNA interface. The simulation results are useful to establish a qualitative link between experimental data on individual residue's contribution to binding affinity and thermodynamic properties of INT-DBD alone and in complex with DNA.  相似文献   
9.
Gorfe AA  Jelesarov I 《Biochemistry》2003,42(40):11568-11576
The N-terminal domain of the bacterial integrase Tn916 specifically recognizes the 11 bp DNA target site by positioning the face of a three-stranded beta-sheet into the major groove. Binding is linked to structural adaptation. We have characterized INT-DBD binding to DNA in detail by calorimetry [Milev, S., Gorfe, A., Karshikoff, A., Clubb, R. T., Bosshard, H. R., and Jelesarov, I. (2003) Biochemistry 42, 3481-3491]. Our thermodynamic analysis has indicated that the major driving force of association is the hydrophobic effect while polar interactions contribute less. To gain more comprehensive information about the binding process, we performed a computational analysis of the binding free energy and report here the results. A hybrid molecular mechanics/continuum approach was followed. The total binding free energy is predicted with reasonable accuracy. The calculations confirm that nonpolar effects stabilize the protein-DNA complex while electrostatics opposes binding. Structural changes optimizing surface complementarity are costly in terms of energy. The energetic consequences from the replacement of nine DNA-contacting residues by alanine were investigated. The calculations correctly predict the binding affinity decrease of eight mutations and the destabilizing effect of one wild-type residue. Bulky side chains stabilize the wild-type complex through packing interactions and favorable nonpolar dehydration, but the net nonpolar energy changes do not correlate with the relative affinity loss upon mutation. Discrete protein-DNA electrostatic interactions may be net stabilizing or net destabilizing depending on the local environment. In contrast to nonpolar energy changes, the magnitude of the electrostatic free energy ranks the mutations according to the experimentally measured DeltaDeltaG. Free energy decomposition analysis from a structural perspective leads to detailed information about the thermodynamic strategy used by INT-DBD for sequence-specific DNA binding.  相似文献   
10.
A qualitative evaluation of electrostatic features of the substrate binding region of seven isoenzymes of trypsin has been performed by using the continuum electrostatic model for the solution of the Poisson-Boltzmann equation. The sources of the electrostatic differences among the trypsins have been sought by comparative calculations on selective charges: all charges, conserved charges, partial charges, unique cold trypsin charges, and a number of charge mutations. As expected, most of the negative potential at the S(1) region of all trypsins is generated from Asp(189), but the potential varies significantly among the seven trypsin isoenzymes. The three cold active enzymes included in this study possess a notably lower potential at and around the S(1)-pocket compared with the warm active counterparts; this finding may be the main contribution to the increased binding affinity. The source of the differences are nonconserved charged residues outside the specificity pocket, producing electric fields at the S(1)-pocket that are different in both sign and magnitude. The surface charges of the mesophilic trypsins generally induce the S(1) pocket positively, whereas surface charges of the cold trypsins produce a negative electric field of this region. Calculations on mutants, where charged amino acids were substituted between the trypsins, showed that mutations in Loop2 (residues 221B and 224) and residue 175, in particular, were responsible for the low potential of the cold enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号