首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   3篇
  2022年   1篇
  2017年   1篇
  2014年   1篇
  2012年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1994年   1篇
  1991年   2篇
  1988年   1篇
  1978年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
A novel series of 4,5-biarylimidazoles as TRPV1 antagonists were designed based on the previously reported 4,6-disubstituted benzimidazole series. The analogs were evaluated for their ability to block capsaicin- or acid-induced calcium influx in TRPV1-expressing CHO cells. These studies led to the identification of a highly potent and orally bioavailable TRPV1 antagonist, imidazole 33.  相似文献   
2.
Vanilloid receptor 1 (TRPV1), a membrane-associated cation channel, is activated by the pungent vanilloid from chili peppers, capsaicin, and the ultra potent vanilloid from Euphorbia resinifera, resiniferatoxin (RTX), as well as by physical stimuli (heat and protons) and proposed endogenous ligands (anandamide, N-arachidonyldopamine, N-oleoyldopamine, and products of lipoxygenase). Only limited information is available in TRPV1 on the residues that contribute to vanilloid activation. Interestingly, rabbits have been suggested to be insensitive to capsaicin and have been shown to lack detectable [(3)H]RTX binding in membranes prepared from their dorsal root ganglia. We have cloned rabbit TRPV1 (oTRPV1) and report that it exhibits high homology to rat and human TRPV1. Like its mammalian orthologs, oTRPV1 is selectively expressed in sensory neurons and is sensitive to protons and heat activation but is 100-fold less sensitive to vanilloid activation than either rat or human. Here we identify key residues (Met(547) and Thr(550)) in transmembrane regions 3 and 4 (TM3/4) of rat and human TRPV1 that confer vanilloid sensitivity, [(3)H]RTX binding and competitive antagonist binding to rabbit TRPV1. We also show that these residues differentially affect ligand recognition as well as the assays of functional response versus ligand binding. Furthermore, these residues account for the reported pharmacological differences of RTX, PPAHV (phorbol 12-phenyl-acetate 13-acetate 20-homovanillate) and capsazepine between human and rat TRPV1. Based on our data we propose a model of the TM3/4 region of TRPV1 bound to capsaicin or RTX that may aid in the development of potent TRPV1 antagonists with utility in the treatment of sensory disorders.  相似文献   
3.
4.
The mammalian transient receptor potential melastatin channel 8 (TRPM8) is highly expressed in trigeminal and dorsal root ganglia. TRPM8 is activated by cold temperature or compounds that cause a cooling sensation, such as menthol or icilin. TRPM8 may play a role in cold hypersensitivity and hyperalgesia in various pain syndromes. Therefore, TRPM8 antagonists are pursued as therapeutics. In this study we explored the feasibility of blocking TRPM8 activation with antibodies. We report the functional characterization of a rabbit polyclonal antibody, ACC-049, directed against the third extracellular loop near the pore region of the human TRPM8 channel. ACC-049 acted as a full antagonist at recombinantly expressed human and rodent TRPM8 channels in cell based agonist-induced 45Ca2+ uptake assays. Further, several poly-and monoclonal antibodies that recognize the same region also blocked icilin activation of not only recombinantly expressed TRPM8, but also endogenous TRPM8 expressed in rat dorsal root ganglion neurons revealing the feasibility of generating monoclonal antibody antagonists. We conclude that antagonist antibodies are valuable tools to investigate TRPM8 function and may ultimately pave the way for development of therapeutic antibodies.  相似文献   
5.

Background  

Metabolically versatile soil bacteria Burkholderia cepacia complex (Bcc) have emerged as opportunistic pathogens, especially of cystic fibrosis (CF). Previously, we initiated the characterization of the phenylacetic acid (PA) degradation pathway in B. cenocepacia, a member of the Bcc, and demonstrated the necessity of a functional PA catabolic pathway for full virulence in Caenorhabditis elegans. In this study, we aimed to characterize regulatory elements and nutritional requirements that control the PA catabolic genes in B. cenocepacia K56-2.  相似文献   
6.
7.
ABSTRACT: BACKGROUND: Transient receptor potential cation channel subfamily M member 8 (TRPM8) is activated by cold temperature in vitro and has been demonstrated to act as a 'cold temperature sensor' in vivo. Although it is known that agonists of this 'cold temperature sensor', such as menthol and icilin, cause a transient increase in body temperature (Tb), it is not known if TRPM8 plays a role in Tb regulation. Since TRPM8 has been considered as a potential target for chronic pain therapeutics, we have investigated the role of TRPM8 in Tb regulation. RESULTS: We characterized five chemically distinct compounds (AMG0635, AMG2850, AMG8788, AMG9678, and Compound 496) as potent and selective antagonists of TRPM8 and tested their effects on Tb in rats and mice implanted with radiotelemetry probes. All five antagonists used in the study caused a transient decrease in Tb (maximum decrease of 0.98degreesC). Since thermoregulation is a homeostatic process that maintains Tb about 37degreesC, we further evaluated whether repeated administration of an antagonist attenuated the decrease in Tb. Indeed, repeated daily administration of AMG9678 for four consecutive days showed a reduction in the magnitude of the Tb decrease Day 2 onwards. CONCLUSIONS: The data reported here demonstrate that TRPM8 channels play a role in Tb regulation. Further, a reduction of magnitude in Tb decrease after repeated dosing of an antagonist suggests that TRPM8's role in Tb maintenance may not pose an issue for developing TRPM8 antagonists as therapeutics.  相似文献   
8.
Deuterium isotope effects and 13C isotope effects with deuterium- and protium-labeled malate have been obtained for both NAD- and NADP-malic enzymes by using a variety of alternative dinucleotide substrates. With nicotinamide-containing dinucleotides as the oxidizing substrate, the 13C effect decreases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data are consistent with a stepwise chemical mechanism in which hydride transfer precedes decarboxylation of the oxalacetate intermediate as previously proposed [Hermes, J. D., Roeske, C. A., O'Leary, M. H., & Cleland, W. W. (1982) Biochemistry 21, 5106]. When dinucleotide substrates such as thio-NAD, 3-acetylpyridine adenine dinucleotide, and 3-pyridinealdehyde adenine dinucleotide that contain modified nicotinamide rings are used, the 13C effect increases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data, at face value, are consistent with a change in mechanism from stepwise to concerted for the oxidative decarboxylation portion of the mechanism. However, the increase in the deuterium isotope effect from 1.5 to 3 with a concomitant decrease in the 13C isotope effect from 1.034 to 1.003 as the dinucleotide substrate is changed suggests that the reaction may still be stepwise with the non-nicotinamide dinucleotides. A more likely explanation is that a beta-secondary 13C isotope effect accompanies hydride transfer as a result of hyperconjugation of the beta-carboxyl of malate as the transition state for the hydride transfer step is approached.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
9.
The kinetic mechanism of NADPH-dependent aldehyde reductase II and aldose reductase, purified from human placenta, has been studied using L-glucuronate and DL-glyceraldehyde as their respective substrates. For aldehyde reductase II, the initial velocity and product inhibition studies (using NADP and gulonate) indicate that the enzyme reaction sequence is ordered with NADPH binding to the free enzyme and NADP being the last product to be released. Inhibition patterns using menadione (an analog of the aldehydic substrate) and ATP-ribose (an analog of NADPH) are also consistent with a compulsory ordered reaction sequence. Isotope effects of deuterium-substituted NADPH (NADPD) also corroborate the above reaction scheme and indicate that hydride transfer is not the sole rate-limiting step in the reaction sequence. For aldose reductase, initial velocity patterns, product, and dead-end inhibition studies indicate a random binding pattern of the substrates and an ordered release of product; the coenzyme is released last. A steady-state random mechanism is also consistent with deuterium isotope effects of NADPD on the reaction sequence catalyzed by this enzyme. However, the hydride transfer step seems to be more rate determining for aldose reductase than for aldehyde reductase II.  相似文献   
10.
Studies in young rodents have shown that the transient receptor potential vanilloid-1 (TRPV1) channel plays a suppressive role in the systemic inflammatory response syndrome (SIRS) by inhibiting production of tumor necrosis factor (TNF)α and possibly by other mechanisms. We asked whether the anti-inflammatory role of TRPV1 changes with age. First, we studied the effect of AMG517, a selective and potent TRPV1 antagonist, on aseptic, lipopolysaccharide (LPS)-induced SIRS in young (12 wk) mice. In agreement with previous studies, AMG517 increased LPS-induced mortality in the young. We then studied the effects of TRPV1 antagonism (AMG517 or genetic deletion of TRPV1) on SIRS in middle-aged (43–44 wk) mice. Both types of TRPV1 antagonism delayed and decreased LPS-induced mortality, indicating a reversal of the anti-inflammatory role of TRPV1 with aging. In addition, deletion of TRPV1 decreased the serum TNFα response to LPS, suggesting that the suppressive control of TRPV1 on TNFα production is also reversed with aging. In contrast to aseptic SIRS, polymicrobial sepsis (induced by cecal ligation and puncture) caused accelerated mortality in aged TRPV1-deficient mice as compared with wild-type littermates. The recovery of TRPV1-deficient mice from hypothermia associated with the cecal ligation and puncture procedure was delayed. Hence, the reversal of the anti-inflammatory role of TRPV1 found in the aged and their decreased systemic inflammatory response are coupled with suppressed defense against microbial infection. These results caution that TRPV1 antagonists, widely viewed as new-generation painkillers, may decrease the resistance of older patients to infection and sepsis.Key words: TRP channels, sepsis, systemic inflammation, endotoxin shock  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号