首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
  2021年   1篇
  2018年   1篇
  2015年   1篇
  2013年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   4篇
  2002年   3篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Fourier transform infrared (FTIR) spectroscopy was used to investigate the secondary structure of pediocin PA-1 in different aqueous media in relation to its antimicrobial activity. The experiments were performed at pD (pH meter corrected for deuterium isotope effect) 6, 7, and 8 and during a heating-cooling cycle of 20-80 degrees C. At pD 6, (i.e. pediocin's most active form), the FTIR results show that pediocin adopts an unordered structure with a small contribution of beta-turn. After a heating-cooling cycle, thermally-induced changes in pediocin are reversed and its activity is maintained. Increasing the pD to 7 and 8 leads to a more ordered secondary structure. For these two pD values, an increase in temperature induces an irreversible aggregation of protein as revealed by the amide I' band. The analysis of the Tyr region provides more insight into the aggregation process. In fact, it appears to be a two-step process, involving first the C (carboxy)-terminus of pediocin and then the N (amino)-terminus. This study reveals two major points: (1) the preservation of pediocin flexibility is essential for maintaining its activity; and (2) the aggregation of its C-terminus is sufficient to induce a loss of activity, suggesting that this region plays an important role in the activity of pediocin.  相似文献   
2.

Background

Heterodimeric phospholipase A2 from venom glands of Tunisian scorpion Scorpio maurus (Sm-PLGV) had been purified. It contains long and short chains linked by a disulfide bridge. Sm-PLGV exhibits hemolytic activity towards human erythrocytes and interacts with phospholipid monolayers at high surface pressure. The investigation of structure-function relationships should provide new clues to understand its activity.

Methods

Molecular cloning of Sm-PLGV and heterologous expression in Escherichia coli of three recombinant forms was used to determine the role of the short chain on enzymatic activity. Infrared spectroscopy assisted 3D model building of the three recombinant constructs (phospholipases with and without the penta-peptide and Long chain only) allowed us to propose an explanation of the differences in specific activities and their interaction with various phospholipids.

Results

Nucleotide sequence of Sm-PLGV encodes 129 residues corresponding to the Long chain, the penta-peptide and the short chain. Although recombinant phospholipases without and with the penta-peptide have different specific activities, they display a similar substrate specificity on various phospholipid monolayers and similar bell-shaped activity profiles with maxima at high surface pressure. The absence of the short chain reduces significantly enzymatic and hemolytic activities. The 3D models pointed to an interaction of the short chain with the catalytic residues, what might explain the difference in activities of our constructs.

Conclusion

Infrared spectroscopy data and 3D modeling confirm the experimental findings that highlight the importance of the short chain for the Sm-PLGV activity.

General significance

New informations are given to further establish the structure-function relationships of the Sm-PLGV.  相似文献   
3.
To obtain molecular insights into the action mode of antimicrobial activity of pediocin PA-1, the interactions between this bacteriocin and dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylglycerol (DMPG) model membranes have been investigated in D(2)O at pD 6 by Fourier transform infrared spectroscopy. The interactions were monitored with respect to alteration of the secondary structure of pediocin, as registered by the amide I' band, and phospholipid conformation, as revealed by the methylene nu(s)(CH(2)) and carbonyl nu(C;O) stretching vibrations. The results show that no interaction between pediocin and DMPC occurs. By contrast, pediocin undergoes a structural reorganization in the presence of DMPG. Upon heating, pediocin self-aggregates, which is not observed for this pD in aqueous solution. The gel-to-crystalline phase transition of DMPG shifts to higher temperatures with a concomitant dehydration of the interfacial region. Our results indicate that pediocin is an extrinsic peptide and that its action mechanism may lie in a destabilization of the cell membrane.  相似文献   
4.
 The goal of this paper is to propose a model of the hippocampal system that reconciles the presence of neurons that look like “place cells” with the implication of the hippocampus (Hs) in other cognitive tasks (e.g., complex conditioning acquisition and memory tasks). In the proposed model, “place cells” or “view cells” are learned in the perirhinal and entorhinal cortex. The role of the Hs is not fundamentally dedicated to navigation or map building, the Hs is used to learn, store, and predict transitions between multimodal states. This transition prediction mechanism could be important for novelty detection but, above all, it is crucial to merge planning and sensory–motor functions in a single and coherent system. A neural architecture embedding this model has been successfully tested on an autonomous robot, during navigation and planning in an open environment. Received: 28 June 1999 / Accepted in revised form: 26 April 2001  相似文献   
5.
To obtain molecular insights into the action mode of antimicrobial activity of pediocin PA-1, the interactions between this bacteriocin and dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylglycerol (DMPG) model membranes have been investigated in D2O at pD 6 by Fourier transform infrared spectroscopy. The interactions were monitored with respect to alteration of the secondary structure of pediocin, as registered by the amide I′ band, and phospholipid conformation, as revealed by the methylene νs(CH2) and carbonyl ν(C=O) stretching vibrations. The results show that no interaction between pediocin and DMPC occurs. By contrast, pediocin undergoes a structural reorganization in the presence of DMPG. Upon heating, pediocin self-aggregates, which is not observed for this pD in aqueous solution. The gel-to-crystalline phase transition of DMPG shifts to higher temperatures with a concomitant dehydration of the interfacial region. Our results indicate that pediocin is an extrinsic peptide and that its action mechanism may lie in a destabilization of the cell membrane.  相似文献   
6.
Terminase enzymes are responsible for "packaging" of viral DNA into a preformed procapsid. Bacteriophage lambda terminase is composed of two subunits, gpA and gpNu1, in a gpA(1).gpNu1(2) holoenzyme complex. The larger gpA subunit is responsible for preparation of viral DNA for packaging, and is central to the packaging motor complex. The smaller gpNu1 subunit is required for site-specific assembly of the packaging motor on viral DNA. Terminase assembly at the packaging initiation site is regulated by ATP binding and hydrolysis at the gpNu1 subunit. Characterization of the catalytic and structural interactions between the DNA and nucleotide binding sites of gpNu1 is thus central to our understanding of the packaging motor at the molecular level. The high-resolution structure of the DNA binding domain of gpNu1 (gpNu1-DBD) was recently determined in our lab [de Beer, T., et al. (2002) Mol. Cell 9, 981-991]. The structure reveals the presence of a winged-helix-turn-helix DNA binding motif, but the location of the ATPase catalytic site in gpNu1 remains unknown. In this work, nucleotide binding to the gpNu1-DBD was probed using acrylamide fluorescence quenching and fluorescence-monitored ligand binding studies. The data indicate that the minimal DBD dimer binds both ATP and ADP at two equivalent but highly cooperative binding sites. The data further suggest that ATP and ADP induce distinct conformations of the dimer but do not affect DNA binding affinity. The implications of these results with respect to the assembly and function of a terminase DNA-packaging motor are discussed.  相似文献   
7.
Extremophiles - In piezophilic microorganisms, enzymes are optimized to perform under high hydrostatic pressure. The two major reported mechanisms responsible for such adaptation in bacterial...  相似文献   
8.
Terminase enzymes are common to double-stranded DNA (dsDNA) viruses and are responsible for packaging viral DNA into the confines of an empty capsid shell. In bacteriophage lambda the catalytic terminase subunit is gpA, which is responsible for maturation of the genome end prior to packaging and subsequent translocation of the matured DNA into the capsid. DNA packaging requires an ATPase catalytic site situated in the N terminus of the protein. A second ATPase catalytic site associated with the DNA maturation activities of the protein has been proposed; however, direct demonstration of this putative second site is lacking. Here we describe biochemical studies that define protease-resistant peptides of gpA and expression of these putative domains in Escherichia coli. Biochemical characterization of gpA-DeltaN179, a construct in which the N-terminal 179 residues of gpA have been deleted, indicates that this protein encompasses the DNA maturation domain of gpA. The construct is folded, soluble and possesses an ATP-dependent nuclease activity. Moreover, the construct binds and hydrolyzes ATP despite the fact that the DNA packaging ATPase site in the N terminus of gpA has been deleted. Mutation of lysine 497, which alters the conserved lysine in a predicted Walker A "P-loop" sequence, does not affect ATP binding but severely impairs ATP hydrolysis. Further, this mutation abrogates the ATP-dependent nuclease activity of the protein. These studies provide direct evidence for the elusive nucleotide-binding site in gpA that is directly associated with the DNA maturation activity of the protein. The implications of these results with respect to the two roles of the terminase holoenzyme, DNA maturation and DNA packaging, are discussed.  相似文献   
9.
Maluf NK  Gaussier H  Bogner E  Feiss M  Catalano CE 《Biochemistry》2006,45(51):15259-15268
Terminase enzymes are common to complex double-stranded DNA viruses and function to package viral DNA into the capsid. We recently demonstrated that the bacteriophage lambda terminase gpA and gpNu1 proteins assemble into a stable heterotrimer with a molar ratio gpA1/gpNu1(2). This terminase protomer possesses DNA maturation and packaging activities that are dependent on the E. coli integration host factor protein (IHF). Here, we show that the protomer further assembles into a homogeneous tetramer of protomers of composition (gpA1/gpNu1(2))4. Electron microscopy shows that the tetramer forms a ring structure large enough to encircle duplex DNA. In contrast to the heterotrimer, the ring tetramer can mature and package viral DNA in the absence of IHF. We propose that IHF induced bending of viral DNA facilitates the assembly of four terminase protomers into a ring tetramer that represents the catalytically competent DNA maturation and packaging complex in vivo. This work provides, for the first time, insight into the functional assembly state of a viral DNA packaging motor.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号