首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   17篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   5篇
  2012年   4篇
  2011年   10篇
  2010年   2篇
  2009年   2篇
  2008年   7篇
  2007年   2篇
  2006年   2篇
  2005年   7篇
  2004年   7篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   9篇
  1999年   5篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1991年   8篇
  1990年   5篇
  1989年   3篇
  1987年   8篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   3篇
  1978年   1篇
排序方式: 共有140条查询结果,搜索用时 62 毫秒
1.
Abstract Cell contents of Clostridium sphenoides , labeled with [32P]orthophosphate under strict anaerobic conditions, were analyzed by two-dimensional gel electrophoresis. Autoradiography of these gels demonstrated the presence of at least 15 32P-labeled protein species, of which M r and iso-electric point were determined. Treatment of the radioactively labeled cell contents with alkaline phosphatase and acid phosphatase showed that all these proteins were modified by phosphorylation. These findings demonstrate for the first time the presence of phosphorproteins in a strictly anaerobic bacterium.  相似文献   
2.
A novel thermophilic spore-forming anaerobic microorganism (strain Ab9) able to grow on citrus pectin and polygalacturonic acid (pectate) was isolated from a thermal spa in Italy. The newly isolated strain grows optimally at 70°C with a growth rate of 0.23 h−1 with pectin and 0.12 h−1 with pectate as substrates. Xylan, starch, and glycogen are also utilized as carbon sources and thermoactive xylanolytic (highest activity at 70°–75°C), amylolytic as well as pullulolytic enzymes (highest activity at 80°–85°C) are formed. Two thermoactive pectate lyases were isolated from the supernatant of a 300-l culture of isolate Ab9 after growth on citrus pectin. The two enzymes (lyases a and b) were purified to homogeneity by ammonium sulfate treatment, anion exchange chromatography, hydrophobic chromatography and finally by preparative gel electrophoresis. After sodium dodecylsulfate (SDS) gel electrophoresis, lyase a appeared as a single polypeptide with a molecular mass of 135 000 Da whereas lyase b consisted of two subunits with molecular masses of 93 000 Da and 158 000 Da. Both enzymes displayed similar catalytic properties with optimal activity at pH 9.0 and 80°C. The enzymes were very stable at 70°C and at 80°C with a half-life of more than 60 min. The maximal activity of the purified lyases was observed with orange pectate (100%) and pectate-sodium salt (90%), whereas pectin was attacked to a much lesser extent (50%). The K m values of both lyases for pectate and citrus pectin were 0.5 g·l−1 and 5.0 g·l−1, respectively. After incubation with polygalacturonic acid, mono-, di-, and tri-galacturonate were detected as final products. A 2.5-fold increase of activity was obtained when pectate lyases were incubated in the presence of 1 mM Ca2+. The addition of 1 mM ethylenediaminetetraacetic acid (EDTA) resulted in complete inhibition of the enzymes. These heat-stable enzymes represent the first pectate-lyases isolated and characterized from a thermophilic anaerobic bacterium. On the basis of the results of the 16S rRNA sequence comparisons and the observed phenotypic differences, we propose strain Ab9 as a new species of Thermoanaerobacter, namely Thermoanaerobacter italicus sp. nov. Received: May 25, 1997 / Accepted: June 5, 1997  相似文献   
3.
4.

A metagenomic library from DNA isolated from a biogas plant was constructed and screened for thermoactive endoglucanases to gain insight into the enzymatic diversity involved in plant biomass breakdown at elevated temperatures. Two cellulase-encoding genes were identified and the corresponding proteins showed sequence similarities of 59% for Cel5A to a putative cellulase from Anaerolinea thermolimosa and 99% for Cel5B to a characterized endoglucanase isolated from a biogas plant reactor. The cellulase Cel5A consists of one catalytical domain showing sequence similarities to glycoside hydrolase family 5 and comprises 358 amino acids with a predicted molecular mass of 41.2 kDa. The gene coding for cel5A was successfully cloned and expressed in Escherichia coli C43(DE3). The recombinant protein was purified to homogeneity using affinity chromatography with a specific activity of 182 U/mg, and a yield of 74%. Enzymatic activity was detectable towards cellulose and mannan containing substrates and over a broad temperature range from 40 °C to 70 °C and a pH range from 4.0 to 7.0 with maximal activity at 55 °C and pH 5.0. Cel5A showed high thermostability at 60 °C without loss of activity after 24 h. Due to the enzymatic characteristics, Cel5A is an attractive candidate for the degradation of lignocellulosic material.

  相似文献   
5.
The temporomandibular joint (TMJ) articulates the mandible with the maxilla. Temporomandibular joint disorders (TMD) are dysfunctions of this joint, which range from acute to chronic inflammation, trauma and dislocations, developmental anomalies and neoplasia. TMD manifest as signs and symptoms that involve the surrounding muscles, ligaments, bones, synovial capsule, connective tissue, teeth and innervations proximal and distal to this joint. TMD induce proximal and distal, chronic and acute, dull or intense pain and discomfort, muscle spasm, clicking/popping sounds upon opening and closing of the mouth, and chewing or speaking difficulties. The trigeminal cranial nerve V, and its branches provide the primary sensory innervation to the TMJ. Our clinical work suggests that the auriculotemporal (AT) nerve, a branch of the mandibular nerve, the largest of the three divisions of the trigeminal nerve, plays a critical role in TMD sequelae. The AT nerve provides the somatosensory fibers that supply the joint, the middle ear, and the temporal region. By projecting fibers toward the otic ganglion, the AT nerve establishes an important bridge to the sympathetic system. As it courses posteriorly to the condylar head of the TMJ, compression, injury or irritation of the AT nerve can lead to significant neurologic and neuro-muscular disorders, including Tourette''s syndrome,Torticolli, gait or balance disorders and Parkinson’s disease. Here, we propose that a proteomic signature of TMD can be obtained by assessing certain biomarkers in local (e.g., synovial fluid at the joint) and distal body fluids (e.g., saliva, cerebrospinal fluid), which can aid TMD diagnosis and prognosis.  相似文献   
6.
Two novel genes encoding for heat and solvent stable lipases from strictly anaerobic extreme thermophilic bacteria Thermoanaerobacter thermohydrosulfuricus (LipTth) and Caldanaerobacter subterraneus subsp. tengcongensis (LipCst) were successfully cloned and expressed in E. coli. Recombinant proteins were purified to homogeneity by heat precipitation, hydrophobic interaction, and gel filtration chromatography. Unlike the enzymes from mesophile counterparts, enzymatic activity was measured at a broad temperature and pH range, between 40 and 90°C and between pH 6.5 and 10; the half-life of the enzymes at 75°C and pH 8.0 was 48 h. Inhibition was observed with 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride and phenylmethylsulfonylfluorid indicating that serine and thiol groups play a role in the active site of the enzymes. Gene sequence comparisons indicated very low identity to already described lipases from mesophilic and psychrophilic microorganisms. By optimal cultivation of E. coli Tuner (DE3) cells in 2-l bioreactors, a massive production of the recombinant lipases was achieved (53–2200 U/l) Unlike known lipases, the purified robust proteins are resistant against a large number of organic solvents (up to 99%) and detergents, and show activity toward a broad range of substrates, including triacylglycerols, monoacylglycerols, esters of secondary alcohols, and p-nitrophenyl esters. Furthermore, the enzyme from T. thermohydrosulfuricus is suitable for the production of optically pure compounds since it is highly S-stereoselective toward esters of secondary alcohols. The observed E values for but-3-yn-2-ol butyrate and but-3-yn-2-ol acetate of 21 and 16, respectively, make these enzymes ideal candidates for kinetic resolution of synthetically useful compounds.  相似文献   
7.
Two α-amylase genes from the thermophilic alkaliphile Anaerobranca gottschalkii were cloned, and the corresponding enzymes, AmyA and AmyB, were investigated after purification of the recombinant proteins. Based on their amino acid sequences, AmyA is proposed to be a lipoprotein with extracellular localization and thus is exposed to the alkaline milieu, while AmyB apparently represents a cytoplasmic enzyme. The amino acid sequences of both enzymes bear high similarity to those of GHF13 proteins. The different cellular localizations of AmyA and AmyB are reflected in their physicochemical properties. The alkaline pH optimum (pH 8), as well as the broad pH range, of AmyA activity (more than 50% activity between pH 6 and pH 9.5) mirrors the conditions that are encountered by an extracellular enzyme exposed to the medium of A. gottschalkii, which grows between pH 6 and pH 10.5. AmyB, on the other hand, has a narrow pH range with a slightly acidic pH optimum at 6 to 6.5, which is presumably close to the pH in the cytoplasm. Also, the intracellular AmyB is less tolerant of high temperatures than the extracellular AmyA. While AmyA has a half-life of 48 h at 70°C, AmyB has a half-life of only about 10 min at that temperature, perhaps due to the lack of stabilizing constituents of the cytoplasm. AmyA and AmyB were very similar with respect to their substrate specificity profiles, clearly preferring amylose over amylopectin, pullulan, and glycogen. Both enzymes also hydrolyzed α-, β-, and γ-cyclodextrin. Very interestingly, AmyA, but not AmyB, displayed high transglycosylation activity on maltooligosaccharides and also had significant β-cyclodextrin glycosyltransferase (CGTase) activity. CGTase activity has not been reported for typical α-amylases before. The mechanism of cyclodextrin formation by AmyA is unknown.  相似文献   
8.
Stillage, which is generated during bioethanol production, constitutes a promising substrate for biogas production within the scope of an integrated biorefinery concept. In this study, a microbial community was grown on thin stillage as mono-substrate in a continuous stirred tank reactor (CSTR) at a constant temperature of 55 °C, at an organic loading rate of 1.5 goTS/L*d and a retention time of 25 days. Using an amplicon-based dataset of 17,400 high-quality sequences of 16S rRNA gene fragments (V2–V3 regions), predominance of Bacteria assigned to the families Thermotogaceae and Elusimicrobiaceae was detected. Dominant members of methane-producing Euryarchaeota within the CSTR belonged to obligate acetoclastic Methanosaetaceae and hydrogenotrophic Methanobacteriaceae. In order to investigate population dynamics during reactor acidification, the organic loading rate was increased abruptly, which resulted in an elevated concentration of volatile fatty acids. Acidification led to a decrease in relative abundance of Bacteria accompanied with stable numbers of Archaea. Nevertheless, the abundance of Methanosaetaceae increased while that of Methanobacteriales decreased successively. These findings demonstrate that a profound intervention to the biogas process may result in persistent community changes and reveals uncommon bacterial families as process-relevant microorganisms.  相似文献   
9.
There is a considerable potential of cold-active biocatalysts for versatile industrial applications. A psychrophilic bacterial strain, Shewanella arctica 40-3, has been isolated from arctic sea ice and was shown to exhibit pullulan-degrading activity. Purification of a monomeric, 150-kDa pullulanase was achieved using a five-step purification approach. The native enzyme was purified 50.0-fold to a final specific activity of 3.0 U/mg. The enzyme was active at a broad range of temperature (10–50 °C) and pH (5–9). Optimal activity was determined at 45 °C and pH 7. The presence of various metal ions is tolerated by the pullulanase, while detergents resulted in decreased activity. Complete conversion of pullulan to maltotriose as the sole product and N-terminal amino acid sequence indicated that the enzyme is a type-I pullulanase and belongs to rarely characterized pullulan-degrading enzymes from psychrophiles.  相似文献   
10.
Glucose hydrolyzing enzymes are essential to determine blood glucose level. A high-throughput screening approach was established to identify NAD(P)-dependent glucose dehydrogenases for the application in test stripes and the respective blood glucose meters. In the current report a glucose hydrolyzing enzyme, derived from a metagenomic library by expressing recombinant DNA fragments isolated from hay infusion, was characterized. The recombinant clone showing activity on glucose as substrate exhibited an open reading frame of 987 bp encoding for a peptide of 328 amino acids. The isolated enzyme showed typical sequence motifs of short-chain-dehydrogenases using NAD(P) as a co-factor and had a sequence similarity between 33 and 35% to characterized glucose dehydrogenases from different Bacillus species. The identified glucose dehydrogenase gene was expressed in E. coli, purified and subsequently characterized. The enzyme, belonging to the superfamily of short-chain dehydrogenases, shows a broad substrate range with a high affinity to glucose, xylose and glucose-6-phosphate. Due to its ability to be strongly associated with its cofactor NAD(P), the enzyme is able to directly transfer electrons from glucose oxidation to external electron acceptors by regenerating the cofactor while being still associated to the protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号